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ABSTRACT

Arbiters exist in nearly every logic design. This paper will present several design ideas for
effectively interfacing to an arbiter and investigate coding styles for some common arbitration
schemes.



1.0 Introduction
Many systems exist in which a large number of requesters must access a common resource. The 
common resource may be a shared memory, a networking switch fabric, a specialized state 
machine, or a complex computational element. An arbiter is required to determine how the 
resource is shared amongst the many requesters. When putting an arbiter into a design, many 
factors must be considered. The interface between the requesters and the arbiter must be 
appropriate for the size and speed of the arbiter. Also, the coding style used will usually impact 
the synthesis results. 

2.0 Interfacing to an Arbiter
Interfacing to an arbiter can appear very straight forward at first. The requester sends a request 
(req) signal, and the arbiter returns a grant. However, as the timing margin of the design is 
tightened, some modifications to this interface may be necessary. 

2.1 Example Requesters

2.1.1 State Machine Requester
Requests to an arbiter are generally driven by either a FIFO queue or a state machine. A state 
machine requester is commonly used when the arbiter is used in a memory controller. If a portion 
of the memory is used for variable storage, a state machine may need to periodically read and/or 
write those variables. For a state machine requester, one of the states of the state machine will 
generally be dedicated to handling the request to grant interface as shown in Listing 1. The req 
signal in this case is a simple decode of the state vector.

Listing 1
case (state_reg)

`STATE_REQ: begin
req <= 1'b1;
mem_read <= 1'b1;
if (grant) begin

next_state <= `STATE_AFTER_REQ;
data_reg_in <= read_data;

end else begin
next_state <= `STATE_REQ;
data_reg_in <= data_reg;

end
`STATE_AFTER_REQ : begin

endcase

2.1.2 FIFO Requester
When the data which is destined for the shared resource is being stored in a FIFO, the request to 
the arbiter can generally come right from the FIFO. Often, the request can simply be the inverse 
of the FIFO's empty signal. A convenient way to generate the fifo_empty and fifo_full signals is 
to compare the read and write pointers of the FIFO. When the pointers are equal, the FIFO is 
either full or empty. By adding an extra bit to the pointers, we can distinguish between full and 
empty as shown in Listing 2.
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Listing 2
// For a 32-position FIFO, five pointer bits are used to access
// the storage array. The sixth bit is used to distinquish between full
// and empty

assign fifo_ptrs_match = (fifo_rdptr[4:0] == fifo_wrptr[4:0]);
assign fifo_full = fifo_ptrs_match && (fifo_rdptr[5] != fifo_wrptr[5]);
assign fifo_empty = fifo_ptrs_match && (fifo_rdptr[5] == fifo_wrptr[5]);
assign req = ~fifo_empty;

2.2 Basic Request - Grant

2.2.1 Simple Interface
Figure 1 shows a FIFO requester interfacing to an arbiter as described in the previous section. The 
paths from req to grant through the block labeled “Arbiter” are assumed to be combinational. As 
we add registers to the request and grant signals in later examples, those registers will be placed in 
the “Arbitration Logic” block. The “Arbiter” block will continue to represent just the core logic 
with a combinational path from req to grant. 

The timing of the interface is shown in Figure 2. When a new request is pushed onto the FIFO, the 
FIFO's write pointer gets incremented and the req signal is generated. When the arbitration logic 
finally grants the request, the FIFO's read pointer gets incremented. If no new pushes have been 
received, the FIFO's read and write pointers are now equal again and the request is dropped. This 
type of requester to arbiter interface works well for many arbiters and is very common in smaller, 
well contained designs.

Figure 1.  Simple Interface
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Figure 2.  Interface Timing

2.2.2 Register the Request
The interface in Figure 1 shows the grant signal being used to pop an element from the FIFO by 
incrementing the FIFO's read pointer. The grant signal is typically needed for many other tasks as 
well, such as multiplexing a datapath, updating the pointer in a round-robin arbiter, or starting a 
state machine. One disadvantage of the interface shown in Figure 1 is that the timing path for the 
grant signal begins back at the FIFO's read and write pointers. The timing on the grant signal can 
be improved by registering the req signal as shown in Figure 3. Instead of comparing the outputs 
of the read and write pointer registers, the logic compares the inputs to the pointer registers and 
then registers the result of this compare. 

Figure 3.  FIFO to Arb Interface with Registered Request
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In Figure 1, there is a timing path from RdPtr, through the compare, Arbiter, next pointer logic, 
and back to RdPtr. Registering the request signal has not really helped this timing path. The 
timing path has just been moved. In Figure 3, the equivalent timing path is from req, through the 
Arbiter, next pointer logic, compare, and back to req. The timing of these paths should be roughly 
equivalent. What has changed is that the pointer compare logic has been removed from the grant 
signal. This can be important in designs where the grant signal has a large fanout or must travel 
some distance across the chip. Another change is that the push input now goes through that 
compare logic on it's way to the req register. If this path has timing problems, the compare can be 
done against the output of the write pointer register rather than the input as shown by the dashed 
line in Figure 3. This is an easy change to make and the extra clock cycle of latency that it adds is 
often not a significant impact on system performance. 

2.3 Registering the Request and the Grant
2.3.1 The Problem with Registering the Grant Signal
When timing on the grant signal becomes troublesome, it may be necessary to register the grant 
signal. The problem with simply registering the grant signal, as shown in Figure 4, is that an extra 
grant could be given at the end of the request. The timing diagram in Figure 5 shows that because 
the grant is now returning one cycle later, the request gets dropped one cycle later, and the arbiter 
may issue a grant for this “late” request.

Figure 4.  Registered Grant - Bad Design

Figure 5.  Timing Error of Registered Grant
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2.3.2 One Simple Fix
The first way to fix this problem is shown in Figure 6. During the cycle when the grant signal is 
high, the request is prevented from reaching the arbiter. While this prevents the extra grant from 
occurring, it also prevents the requester from getting back-to-back grants if the FIFO has several 
items in it. At first glance, limiting access to alternating clock cycles may appear to be a huge 
performance penalty. However, if other requesters are active, an arbiter such as a round-robin will 
generally choose a different requester anyway, so the performance penalty might be negligible.

One case where this solution would not be appropriate is when one or two requesters dominate the 
bandwidth of the system. For example, a SCSI Ultra320 hard disk controller may have 500 
MBytes/sec of bandwidth to its DRAM buffer, but the SCSI interface alone requires 320 MBytes/
sec of this bandwidth. Supporting this requires that the arbiter be able to supply back-to-back 
grants to the FIFO in the SCSI interface logic.

Figure 6.  Registered Grant - Okay Design
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Figure 7.  Using a last_req Signal
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Figure 8.  Adding a Queue to the Arbitration Logic
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Figure 9.  Latency Independent Design
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The functionality that was added to the FIFOs in Figures 7, 8, and 9 could have been implemented 
with up/down counters instead of the pointers that were shown. For example, rdptr_plus1 and 
rdptr_sent could have been replaced with a count of how many elements were in the FIFO. This 
counter would increment on a push and decrement on grant (see Figure 7), go (see Figure 8), or 
req (see Figure 9). The last_req register in Figure 7 would then simply get loaded with next_count 
= 1. In Figure 8, a req could be sent as long as the count was not equal to zero. Similarly, the 
rdptr_limit pointer in Figure 9 could be replaced by a “Number of Reqs Available” counter which 
resets to the arbitration logic's queue depth, decremented on req, and incremented on grant. 

While using up/down counters like these would be functionally correct, it is generally less 
efficient for both timing and area. A compare versus a constant (e.g., count = = 1) will be smaller 
and faster than a compare between two variables (e.g., next_wrptr != next_rdptr_sent). However, 
this benefit is usually more than offset by the increased area and path delay of an up/down counter 
versus a simple incrementing counter.

Another choice for implementing this functionality is to code the counters as one-hot shift 
registers. This type of implementation can be very fast. However, for deep FIFO’s, the area 
required may be undesirable.

Req Grant
Arbiter

Arbitration Logic

Wr Ptr
Next

Pop

FIFO

Push

Rd Ptr Sent
Next

Next

Next

Rd Ptr

Rd Ptr Limit
SNUG Boston 2001 9 Arbiters: Design Ideas and Coding Styles



3.0 Simple Priority Arbiter

3.1 Description
One common arbitration scheme is the simple priority arbiter. Each requester is assigned a fixed 
priority, and the grant is given to the active requester with the highest priority. For example, if the 
request vector into the arbiter is req[N-1:0], req[0] is typically declared the highest priority. If 
req[0] is active, it gets the grant. If not, and req[1] is active, grant[1] is asserted, and so on. Simple 
priority arbiters are very common when choosing between just a few requesters. For example, a 
maintenance port may always be lower priority than the functional port. ECC corrections may 
always be higher priority than all other requests.

Priority arbiters are also often used as the basis for other types of arbiters. A more complex arbiter 
may reorder the incoming requests into the desired priority, run these scrambled requests through 
a simple priority arbiter, then unscramble the grants which come out. Several examples of this can 
be seen in the round-robin arbiters as discussed in Section 4.0.

3.2 Coding Styles

3.2.1 Coding a Priority Arbiter with a Case Statement
The most common way of coding a priority arbiter is with a case statement as shown in Listing 3. 

Listing 3
casez (req[3:0])

4'b???1 : grant <= 4'b0001;
4'b??10 : grant <= 4'b0010;
4'b?100 : grant <= 4'b0100;
4'b1000 : grant <= 4'b1000;
4'b0000 : grant <= 4'b0000;

endcase

This coding style works fine in small cases. However, when a larger priority encoder is needed, 
generally as part of a more complex arbitration scheme, it gets to be a lot of typing and mistakes 
are easy to make.

3.2.2 Coding a Priority Arbiter with Three Assign Statements
For a much simpler method of coding a priority arbiter, first look at the logic that is required as 
shown in Listing 4.

Listing 4
grant[0] = req[0];
grant[1] = ~req[0] & req[1];
grant[2] = ~req[0] & ~req[1] & req[2];
...etc...

A bit in the grant signal will be active if its corresponding request signal is active, and there are no 
higher priority requests. By introducing an intermediate term called higher_priority_reqs, the 
arbitration can be coded with three assign statements. If desired, it can even be parameterized as 
shown in Listing 5.
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Listing 5
parameter N = 16; // Number of requesters

// For example, higher_pri_reqs[3] = higher_pri_reqs[2] | req[2];
assign higher_pri_reqs[N-1:1] = higher_pri_reqs[N-2:0] | req[N-2:0];
assign higher_pri_reqs[0] = 1'b0;
assign grant[N-1:0] = req[N-1:0] & ~higher_pri_reqs[N-1:0];

3.2.3 Using Design Ware
Designers with a license for the Synopsys DesignWare Foundation library have another choice for 
building a priority arbiter. DW_arbiter_sp is a parameterized arbiter with a fixed priority scheme. 
This component includes several features which may be useful at times, or they can be removed 
by Design Compiler. The mask feature prevents some requesters from participating in the 
arbitration. The lock feature allows the granted requester to lock the arbiter and continue to 
receive grants, regardless of the state of other requesters, until the lock input is released. The park 
feature, which can be disabled by setting the appropriate instantiation parameter, sets a default 
grant if there are no active requesters. The DesignWare arbiter component includes registering of 
the grant signal, so using the park feature can save a clock cycle if the first requester to come on 
after an idle period is the “parked” requester. One potential disadvantage of the DesignWare 
component is that its registers are implemented with asynchronous resets, which sometimes cause 
difficulty in static timing and testability.

3.3 Synthesis Setup
The coding styles investigated were generally implemented for three different sizes of arbiters: 
four requesters, sixteen requesters, and sixty-four requesters. The DesignWare component 
supports a maximum of thirty-two requesters, so it was only implemented for arbiters of four and 
sixteen requesters. Because the DesignWare component includes a register on the grant signal, the 
FIFO to Arbiter interface from Figure 7 was used. The designs were synthesized using a 0.18 
micron technology. Listings 6 and 7 show the major portions of the build and constraint scripts 
used with Design Compiler v2000.11.

Listing 6 - compile.tcl
# Read in FIFO code
foreach SUB_DESIGN $SUB_DESIGNS {

set V_SRC [format "%s%s" $SUB_DESIGN ".v"]
analyze -format verilog $V_SRC

}

# Read in Arbiter code
set V_SRC [format "%s%s" $TOP_DESIGN ".v"]
read_verilog $V_SRC
current_design $TOP_DESIGN
source $CON_DIR/$CON_FILE
link
uniquify
compile -map medium
# Get rid of any design ware and sub designs
ungroup -all -flatten
compile -incremental
# Separate FIFO timing paths from Arbiter timing paths
group-path -name FIFO -to [req_fifo*req*/*D*]
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Listing 7 - constrain.tcl
# Use 0.3ns for flop->output. Although unrealistic, add 0ns
# for top level nets so critical path stays in arbiter
# instead of moving to FIFO.
set IN_DELAY 0.3
set OUT_DELAY [expr $CLOCK_PERIOD - 0.3]
set CLOCK_PORT [get_ports clk]
set RESET_PORT [get_ports rst]
# Assume reset will have buffer tree built for it later
set_wire_load_model -name NONE $RESET_PORT
set_drive 0 $RESET_PORT
# Constrain flop -> flop paths
create_clock -period $CLOCK_PERIOD -name CLK $CLOCK_PORT
set_dont_touch_network [get_clocks CLK]
# Constrain input -> flop paths
create_clock -period $CLOCK_PERIOD -name IO_VIRTUAL_CLK
set input_list [remove_from_collection [remove_from_collection [all_inputs]
$CLOCK_PORT] $RESET_PORT]
set_input_delay -max $IN_DELAY -clock IO_VIRTUAL_CLK $input_list
group_path -name INPUT -from $input_list
# Constrain flop -> output paths
set_output_delay -max $OUT_DELAY -clock IO_VIRTUAL_CLK [all_outputs]

Since the primary objective was to see how fast the designs would run, synthesis was run 
iteratively, each time with a faster clock speed until the “fastest” design was achieved for each 
size of arbiter. This was then used as the target frequency for the final synthesis run which gave 
the results shown in Tables 1 through 3.

3.4 Synthesis Results
Tables 1, 2, and 3 show the timing, area, and compile time required for each of the designs. While 
the design which used the DesignWare component was slower, the “case” and “assign” coding 
styles were generally comparable. Because it is easier to code, the “assign” coding style is the 
preferred choice for priority arbiters.

Table 1: Timing Results for Priority Arbiters
(Delay of Longest Path in ns)

Arbiter Size  64  16 4

DesignWare - - - 2.26 1.51

Case 1.60 1.51 0.97

 Assign 1.59 1.50 1.08
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4.0 Round-Robin Arbiter

4.1 Description
The key shortcoming of priority arbiters is that, in very busy systems, there is no limit to how long 
a lower priority request may need to wait until it receives a grant. A round-robin arbiter on the 
other hand allows every requester to take a turn in order. A pointer register is maintained which 
points to the requester who is next. If that requester is active, it gets the grant. If not, the next 
active requester gets the grant. The pointer is then moved to the next requester. In this way, the 
maximum amount of time that a requester will wait is limited by the number of requesters.

4.2 Coding Styles
There are many different ways that a round-robin arbiter can be coded. Contrary to the results 
seen with priority arbiters, the coding style used to implement a round-robin arbiter can have a 
significant effect on the synthesis results obtained. Several possibilities for coding a round-robin 
arbiter are explored.

4.2.1 Coding a Big Blob
The first method of coding a round-robin arbiter is shown in Listing 8. The arbiter is implemented 
with nested case statements. I actually taped out a chip with an arbiter coded like this....once. 
There are a few side effects of this coding style. The most noticeable side effect is called carpel-
tunnel-vision syndrome. This condition is characterized by sore fingers and wrists caused by 
failing to look around enough to see a better way of coding your design. 

Table 2: Area Results for Priority Arbiters

 Arbiter Size 64 16 4

DesignWare - - - 8250 2035

 Case 32778 8101 2014

 Assign 34260 8576 2166

Table 3: Compile Time Results for Priority Arbiters

Arbiter Size 64 16 4

DesignWare - - - 7 min 2 min

 Case 27 min 7 min 2 min

Assign 21 min 8 min 3 min
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Listing 8
always @ ( /*AUTOSENSE*/pointer_reg or req) begin

case (pointer_reg) // synopsys full_case parallel_case
2'b00 :

if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else grant = 4'b0000;

2'b01 :
if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else grant = 4'b0000;

2'b10 :
if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else grant = 4'b0000;

2'b11 :
if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else grant = 4'b0000;

endcase // case(req)
end

4.2.2 Rotate + Priority + Rotate
Perhaps the most common method of coding a round-robin arbiter is built on top of a simple 
priority arbiter. The requester that is pointed to by the round-robin pointer is shifted to the highest 
priority position, and the other requests are rotated in behind it. This rotated request vector is then 
sent through a simple priority arbiter. The grant vector from the priority arbiter is then “unrotated” 
to come up with the round-robin arbiter’s final grant signal. This is shown in the block diagram of 
Figure 10.

Figure 10.  Round-Robin Arbiter: Rotate + Priority + Rotate

The rotate can be coded with a case statement as shown in Listing 9. A more compact method 
using Verilog’s shift operator is shown in Listing 10. The synthesis results reported in Section 4.3 
used the shift operater.
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Listing 9
always @ ( /*AUTOSENSE*/pointer_reg or req) begin

case (pointer_reg) // synopsys full_case parallel_case
2'b00 : req_shifted[3:0] = req[3:0];
2'b01 : req_shifted[3:0] = {req[0],req[3:1]};
2'b10 : req_shifted[3:0] = {req[1:0],req[3:2]};
2'b11 : req_shifted[3:0] = {req[2:0],req[3]};

endcase // case(pointer_reg)
end // always @ (...

Listing 10
// The shift operator fills in vacated bits
// with zeros. We would like it filled in with
// the bits that were pushed out. This is implemented
// by concatenating req onto itself, doing a shift,
// then taking the rightmost bits.
assign req_shifted_double[31:0] = {req[15:0],req[15:0]} >> pointer_reg;
assign req_shifted[15:0] = req_shifted_double[15:0];

4.2.3 Muxed Parallel Priority Arbs: Fast, but Big
Another method of constructing a round-robin arbiter for N requesters using N simple priority 
arbiters arranged in parallel is shown in Figure 11. The “rotate i” blocks which precede the simple 
priority arbiters rotate the req to the right by “i” positions. These blocks contain no logic; they are 
wires only. The inputs to the mux are then the grant vectors for every possible value of the round-
robin pointer. The pointer controls the mux which selects which of the intermediate grant vectors 
will actually be used. Both the mux in this example and the rotate in the previous design can be 
implemented with a 2:1 mux tree with lgN stages. Therefore, this design, with only one mux tree 
in the critical path, is expected to be faster than the previous design. Unfortunately, for arbiters 
with a large number of requesters, the area of this design is expected to blow up due to the large 
number of priority arbiters it contains.

Figure 11.  Round-Robin Arbiter: Parallel Priority Arbiters

Rotate 0

Rotate 1

Rotate N-1

Simple
Priority

Simple
Priority

Simple
Priority

N

N

N

N N

N

N

N
Req

Pointer

Grant
SNUG Boston 2001 15 Arbiters: Design Ideas and Coding Styles



4.2.4 Using Two Simple Priority Arbiters with a Mask
A round-robin design which generally gives good results for both area and timing is shown in 
Figure 12. This design uses two priority arbiters. One of the priority arbiters is fed with the entire 
request signal, while the other one first masks out any requests which come before the one 
selected by the round-robin pointer. The mask is built from the round-robin pointer as shown in 
Listing 11. If a grant is selected by the upper arbiter, the mux chooses that grant for the final 
result, otherwise the result from the lower arbiter is used. Since NoMask = 0 implies that 
MaskGrant = 0, the mux can be simplified somewhat as shown in the lower portion of Figure 12.

The path from req to grant has now been reduced to the simple priority arbiter, two And gates, and 
an Or gate. Therefore, if the req to grant path is the critical path, this design is expected to have 
the best performance of the designs presented here.

Figure 12.  Round-Robin Arbiter: “Mask” Method
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2'b00: req_mask <= 4'b1111;
2'b01: req_mask <= 4'b1110;
2'b10: req_mask <= 4'b1100;
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4.2.5 DesignWare
The Synopsys DesignWare Foundation library also includes an arbiter with a dynamic priority 
scheme called DW_arbiter_dp. In this arbiter, each of the N requesters sends not only a request, 
but also a ceil(log2N) bit priority to the arbiter. By properly controlling the priority inputs from 
each requester, this arbiter could be used to build a round-robin arbiter. However, the extra 
flexibility makes comparisons to the other round-robin designs unfair so the DesignWare part was 
not included in this study.

4.3 Synthesis Results
Tables 4, 5, and 6 show the timing, area, and compile time required for each of the designs. 

Table 4: Timing Results for Round-Robin Arbiters

 Arbiter Size  64 16 4

Mux 3.20 2.09 1.60

Mask 2.90 2.03 1.57

Shift 4.33 2.84 1.74

Blob - - - 1.97 1.58

Table 5: Area Results for Round-Robin Arbiters

 Arbiter Size 64  16  4

Mux 35786 8739 2184

Mask 29588 7736 2226

Shift 37076 8991 2187

Blob - - - 7758 2175

Table 6: Compile Time Results for Round-Robin Arbiters

Arbiter Size 64 16 4

Mux 67 min 10 min 3 min

Mask 26 min 7 min 2 min

Shift 90 min 24 min 2 min

Blob - - - 7 min 2 min
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As expected, the mask and mux coding styles were the fastest implementations. Because the 
sixty-four requester version of the mux design starts with sixty-four priority arbiters in parallel, 
the area of this design was expected to be much higher than the mask design. The results show the 
mux design with about 20% greater area than the mask design for an arbiter with sixty-four 
requesters. Also, Design Compiler worked for about two and one-half times as long on the mux 
design as it did on the mask design.

Design Compiler was able to optimize the “blob” coding style to similar speed and area results as 
the mask design for four and sixteen requesters. However, a sixty-four requester version of this 
coding style was not implemented due to the amount of tedious typing it would have required.

The surprising result was the poor results seen with the shift coding style. With sixty-four 
requesters, its performance was 50% slower than the other coding styles. It also had the largest 
area and the longest compile time.

4.4 Common Variations
4.4.1 Round-Robin Pointer Implementations
For some architectures, there may be an advantage to having the round-robin pointer implemented 
as a one-hot vector. Synthesis results for using a one-hot pointer are shown in Tables 7, 8, and 9. 
Also, the mask coding style could benefit from having the mask value stored as the pointer, rather 
than needing to calculate it from the pointer. This is also shown in Tables 7, 8, and 9 as the 
mask_expand design.

Table 7: Timing Results for Round-Robin Arbiters

 Arbiter Size  64 

mask_onehot 2.72

mask_expand 2.70

mux_onehot 2.70

Table 8: Area Results for Round-Robin Arbiters

Arbiter Size  64

mask_onehot 27684

mask_expand 27430

mux_onehot 34192
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For both the mask and mux designs, one hot encoding of the round-robin pointer was beneficial 
for both area and timing. The mask_expand design, however is the fastest and smallest of all the 
round-robin designs investigated. It is also the fastest to compile and requires the fewest number 
of lines to code. This is because the pointer update equations can be built almost entirely from 
existing logic. If the two priority arbiters which are used in the mask design are coded with the 
“three assign” technique shown in Listing 5, the next value of the pointer register is the 
higher_pri_reqs signal from either the masked or unmasked arbiter. The final code for this round-
robin arbiter is shown in Listing 12.

Listing 12 - mask_expand round-robin arbiter
// Simple priority arbitration for masked portion
assign req_masked = req & pointer_reg;
assign mask_higher_pri_reqs[N-1:1] = mask_higher_pri_reqs[N-2: 0] |
req_masked[N-2:0];
assign mask_higher_pri_reqs[0] = 1'b0;
assign grant_masked[N-1:0] = req_masked[N-1:0] & ~mask_higher_pri_reqs[N-1:0];

// Simple priority arbitration for unmasked portion
assign unmask_higher_pri_reqs[N-1:1] = unmask_higher_pri_reqs[N-2:0] | req[N-2:0];
assign unmask_higher_pri_reqs[0] = 1'b0;
assign grant_unmasked[N-1:0] = req[N-1:0] & ~unmask_higher_pri_reqs[N-1:0];

// Use grant_masked if there is any there, otherwise use grant_unmasked.
assign no_req_masked = ~(|req_masked);
assign grant = ({N{no_req_masked}} & grant_unmasked) | grant_masked;

// Pointer update
always @ (posedge clk) begin

if (rst) begin
pointer_reg <= {N{1'b1}};

end else begin
if (|req_masked) begin // Which arbiter was used?

pointer_reg <= mask_higher_pri_reqs;
end else begin

if (|req) begin // Only update if there's a req
pointer_reg <= unmask_higher_pri_reqs;

end else begin
pointer_reg <= pointer_reg ;

end
end

end

Table 9: Compile Time Results for Round-Robin Arbiters

 Arbiter Size 64

mask_onehot 34 min

 mask_expand 13 min

 mux_onehot 49 min
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end
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4.4.2 Round-Robin Pointer Updating
There are three basic methods for updating the round-robin pointer:

1. After a grant, increment the pointer.
2. After a grant, move the pointer to the requester after the one which just received the grant.
3. After a grant, move the pointer to the first Active requester after the one which just 

received the grant.

The first method is sometimes considered unfair because a single requester can receive back-to-
back grants, even if other requesters are active. For example, if requesters 7, 9, and 10 are active, 
and the pointer is on requester 2, requester 7 will receive six grants in a row before the pointer is 
beyond it and requesters 9 and10 will be allowed access. 

This fairness issue is fixed in the second method. Advancing the pointer to the location after the 
grant automatically puts the recently granted signal as the lowest priority request on the next 
cycle. This method was used for the results reported in Tables 4 through 9.

Some of the arbiter’s performance statistics can be improved slightly by using the third method. 
Continuing with the example above, after the grant is given to requester 7, method two will 
update the pointer to requester 8, while method three will update the pointer to requester 9. If 
requester 8 becomes active in this cycle, method two will give it an immediate grant, while 
method three will continue to grant requesters 9 and 10 before coming back around to requester 8. 
The average latency of all requesters will be the same in either case. However, the latency 
variance will be less with method three, and the max latency may be less with method three. 
Whether or not this translates into improved system performance depends on the system’s 
requirements.

One of the difficulties with implementing the third pointer update method is meeting timing on 
the pointer update. A common method essentially requires going through two arbitrations to 
determine the next pointer value. First, the traditional arbitration is run to determine the grant 
vector. Then, the req from the winning requester is negated and the second arbiter is run to 
determine which of the remaining valid requesters (if any) is the first one after the granted 
requester. Because this path runs through two arbiters, it often becomes the critical path.

An alternate method which achieves the same results as method 3 is shown in Figure 13. In this 
design, the pointer updates like method 2, but some logic has been added so that the arbiter will 
give the same results as a method 3 update. This is achieved by running two arbiters in parallel. 
The lower arbiter uses the current request vector as its inputs. The upper arbiter uses as its inputs 
the request vector from the previous cycle, except for the requester which was granted and any 
requests which have been dropped. If there are any results from the upper arbiter, its results are 
used, otherwise the standard arbiter results are used. This design adds only a 2:1 mux and a couple 
of And gates to the timing path. This should be much easier to close timing than the design which 
had two arbiters in series.
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Figure 13.  Alternate Use of Round-Robin Pointer

4.0 Conclusions
This paper presented several different methods for interfacing to an arbiter. Which method is the 
best one to use for a particular design depends on the size and speed of the chip that is being built. 
Options were presented which cover a wide range of potential applications.

Two common arbitration schemes were then investigated. For priority arbiters, it was shown that 
the primary consideration for coding style is ease of writing, reading, and maintaining the code. A 
simple three-line implementation was shown to accomplish these goals. For round-robin arbiters, 
the coding style can greatly influence the quality of synthesis results. For all metrics, the “mask” 
coding style with the round-robin pointer stored as the mask, was shown to be superior to other 
common coding styles.
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