
Arbiters: Design Ideas and Coding Styles

Matt Weber

Silicon Logic Engineering, Inc.

matt@siliconlogic.com

Matthew.D.Weber@ieee.org

ABSTRACT

Arbiters exist in nearly every logic design. This paper will present several design ideas for
effectively interfacing to an arbiter and investigate coding styles for some common arbitration
schemes.

1.0 Introduction
Many systems exist in which a large number of requesters must access a common resource. The
common resource may be a shared memory, a networking switch fabric, a specialized state
machine, or a complex computational element. An arbiter is required to determine how the
resource is shared amongst the many requesters. When putting an arbiter into a design, many
factors must be considered. The interface between the requesters and the arbiter must be
appropriate for the size and speed of the arbiter. Also, the coding style used will usually impact
the synthesis results.

2.0 Interfacing to an Arbiter
Interfacing to an arbiter can appear very straight forward at first. The requester sends a request
(req) signal, and the arbiter returns a grant. However, as the timing margin of the design is
tightened, some modifications to this interface may be necessary.

2.1 Example Requesters

2.1.1 State Machine Requester
Requests to an arbiter are generally driven by either a FIFO queue or a state machine. A state
machine requester is commonly used when the arbiter is used in a memory controller. If a portion
of the memory is used for variable storage, a state machine may need to periodically read and/or
write those variables. For a state machine requester, one of the states of the state machine will
generally be dedicated to handling the request to grant interface as shown in Listing 1. The req
signal in this case is a simple decode of the state vector.

Listing 1
case (state_reg)

`STATE_REQ: begin
req <= 1'b1;
mem_read <= 1'b1;
if (grant) begin

next_state <= `STATE_AFTER_REQ;
data_reg_in <= read_data;

end else begin
next_state <= `STATE_REQ;
data_reg_in <= data_reg;

end
`STATE_AFTER_REQ : begin

endcase

2.1.2 FIFO Requester
When the data which is destined for the shared resource is being stored in a FIFO, the request to
the arbiter can generally come right from the FIFO. Often, the request can simply be the inverse
of the FIFO's empty signal. A convenient way to generate the fifo_empty and fifo_full signals is
to compare the read and write pointers of the FIFO. When the pointers are equal, the FIFO is
either full or empty. By adding an extra bit to the pointers, we can distinguish between full and
empty as shown in Listing 2.
SNUG Boston 2001 2 Arbiters: Design Ideas and Coding Styles

Listing 2
// For a 32-position FIFO, five pointer bits are used to access
// the storage array. The sixth bit is used to distinquish between full
// and empty

assign fifo_ptrs_match = (fifo_rdptr[4:0] == fifo_wrptr[4:0]);
assign fifo_full = fifo_ptrs_match && (fifo_rdptr[5] != fifo_wrptr[5]);
assign fifo_empty = fifo_ptrs_match && (fifo_rdptr[5] == fifo_wrptr[5]);
assign req = ~fifo_empty;

2.2 Basic Request - Grant

2.2.1 Simple Interface
Figure 1 shows a FIFO requester interfacing to an arbiter as described in the previous section. The
paths from req to grant through the block labeled “Arbiter” are assumed to be combinational. As
we add registers to the request and grant signals in later examples, those registers will be placed in
the “Arbitration Logic” block. The “Arbiter” block will continue to represent just the core logic
with a combinational path from req to grant.

The timing of the interface is shown in Figure 2. When a new request is pushed onto the FIFO, the
FIFO's write pointer gets incremented and the req signal is generated. When the arbitration logic
finally grants the request, the FIFO's read pointer gets incremented. If no new pushes have been
received, the FIFO's read and write pointers are now equal again and the request is dropped. This
type of requester to arbiter interface works well for many arbiters and is very common in smaller,
well contained designs.

Figure 1. Simple Interface

Rd Ptr

=
Req

GrantArbiter

Arbitration Logic

Wr Ptr
Next

Next

Push

FIFO

FIFO
Empty
SNUG Boston 2001 3 Arbiters: Design Ideas and Coding Styles

Figure 2. Interface Timing

2.2.2 Register the Request
The interface in Figure 1 shows the grant signal being used to pop an element from the FIFO by
incrementing the FIFO's read pointer. The grant signal is typically needed for many other tasks as
well, such as multiplexing a datapath, updating the pointer in a round-robin arbiter, or starting a
state machine. One disadvantage of the interface shown in Figure 1 is that the timing path for the
grant signal begins back at the FIFO's read and write pointers. The timing on the grant signal can
be improved by registering the req signal as shown in Figure 3. Instead of comparing the outputs
of the read and write pointer registers, the logic compares the inputs to the pointer registers and
then registers the result of this compare.

Figure 3. FIFO to Arb Interface with Registered Request

Clk

Push

Req

Grant

T1 T2 T3 T4 T5

Rd Ptr

=
Req

GrantArbiter

Arbitration Logic

Wr Ptr
Next

Next

Push

FIFO

FIFO
Empty
SNUG Boston 2001 4 Arbiters: Design Ideas and Coding Styles

In Figure 1, there is a timing path from RdPtr, through the compare, Arbiter, next pointer logic,
and back to RdPtr. Registering the request signal has not really helped this timing path. The
timing path has just been moved. In Figure 3, the equivalent timing path is from req, through the
Arbiter, next pointer logic, compare, and back to req. The timing of these paths should be roughly
equivalent. What has changed is that the pointer compare logic has been removed from the grant
signal. This can be important in designs where the grant signal has a large fanout or must travel
some distance across the chip. Another change is that the push input now goes through that
compare logic on it's way to the req register. If this path has timing problems, the compare can be
done against the output of the write pointer register rather than the input as shown by the dashed
line in Figure 3. This is an easy change to make and the extra clock cycle of latency that it adds is
often not a significant impact on system performance.

2.3 Registering the Request and the Grant
2.3.1 The Problem with Registering the Grant Signal
When timing on the grant signal becomes troublesome, it may be necessary to register the grant
signal. The problem with simply registering the grant signal, as shown in Figure 4, is that an extra
grant could be given at the end of the request. The timing diagram in Figure 5 shows that because
the grant is now returning one cycle later, the request gets dropped one cycle later, and the arbiter
may issue a grant for this “late” request.

Figure 4. Registered Grant - Bad Design

Figure 5. Timing Error of Registered Grant

Req
GrantArbiter

Arbitration Logic

Next

FIFO

Clk

Req

 Grant Raw

Grant oops

oops
SNUG Boston 2001 5 Arbiters: Design Ideas and Coding Styles

2.3.2 One Simple Fix
The first way to fix this problem is shown in Figure 6. During the cycle when the grant signal is
high, the request is prevented from reaching the arbiter. While this prevents the extra grant from
occurring, it also prevents the requester from getting back-to-back grants if the FIFO has several
items in it. At first glance, limiting access to alternating clock cycles may appear to be a huge
performance penalty. However, if other requesters are active, an arbiter such as a round-robin will
generally choose a different requester anyway, so the performance penalty might be negligible.

One case where this solution would not be appropriate is when one or two requesters dominate the
bandwidth of the system. For example, a SCSI Ultra320 hard disk controller may have 500
MBytes/sec of bandwidth to its DRAM buffer, but the SCSI interface alone requires 320 MBytes/
sec of this bandwidth. Supporting this requires that the arbiter be able to supply back-to-back
grants to the FIFO in the SCSI interface logic.

Figure 6. Registered Grant - Okay Design

2.3.3 Regain Performance with the last_req Signal
Some of the performance lost by registering the grant signal can be regained if the requester can
see into the future. A last_req signal has been added to the circuit in Figure 7. This signal tells the
arbiter if the request will drop after the next grant is received. This circuit will allow the requester
to participate in arbitration until it's last request is granted.

In the case of a FIFO requester, the last request occurs when there is only one entry left in the
FIFO. With one entry left in the FIFO, the read pointer plus one equals the write pointer . While
this could be implemented with combinational logic, it is usually easier to add a “read pointer plus
one” register as shown in Figure 7. This “read pointer plus one” register is identical to the original
read pointer register except on reset it initializes to one instead of initializing to zero.

The pair of And gates shown in Figure 7 could be included in either the arbitration logic or the
FIFO logic, depending on synthesis and physical considerations. Including them in the FIFO logic
preserves the traditional req-grant interface between the FIFO and arbiter. Including them in the
arbitration logic as shown provides registered inputs to the arbitration logic which may simplify
synthesis scripting. Also, the grant signal goes through the And gates, then returns to the arbiter.
Therefore, having the And gates in the arbitration logic may help timing if the FIFO and arbiter
are widely separated on the chip.

Req GrantArbiter

Arbitration Logic

Next

FIFO
SNUG Boston 2001 6 Arbiters: Design Ideas and Coding Styles

Figure 7. Using a last_req Signal

2.3.4 Add a Small Queue to the Arbitration Logic
An alternative to adding the last_req signal described above is to add a small queue to the
arbitration logic for each requester. This is shown in Figure 8. Access to the shared resource is
now a three step process. First, the FIFO sends the request. Second, the request is acknowledged
when the arbitration logic accepts it into its queue. Third, the grant signal is sent when the arbiter
selects this requester.

The FIFO read pointer is still incremented by the grant signal, but it no longer is used in the
generation of the req signal. Instead, a new pointer called rdptr_sent is added. This pointer is
incremented when the FIFO makes a request and the queue in the arbitration logic is not full.

This approach becomes useful if the requesting FIFOs and the arbitration logic are separated from
each other on the chip. With the last_req approach shown in Figure 7, req and last_req are top
level signals and will have some delay traveling across the chip. Then these signals still need to
get through the arbiter before being captured at the grant register. With the design in Figure 8, the
arbiter is getting its inputs from the nearby queue, rather than from the far-away FIFO.

Req

GrantArbiter

Arbitration Logic

Wr Ptr
Next

FIFO

Push

Rd Ptr
Next

Next
Rd Ptr p1

Last Req
SNUG Boston 2001 7 Arbiters: Design Ideas and Coding Styles

Figure 8. Adding a Queue to the Arbitration Logic

2.4 Big Chips - Registered Repeaters on Req and Grant
One disadvantage of the previous two designs is that an extra signal has been added to the FIFO to
Arbiter interface. By adding one more pointer to the FIFO, we can return to a two signal
req-grant interface. The new pointer is called rdptr_limit and is shown in Figure 9. At reset, while
the other pointers are initialized to zero, this pointer is initialized to the depth of the queue that has
been added to the arbitration logic. To prevent an overrun of the queue in the arbitration logic, the
rdptr_sent counter is not allowed to proceed beyond the rdptr_limit value. As grants are received
from the arbitration logic, rdptr_limit is incremented allowing more requests to be sent.

An important side benefit of this design is that it is tolerant of any additional latency that might be
added to the request or grant signals. In process technologies of 0.18 micron and below, and clock
speeds in excess of 200 MHz, signals might reach less than halfway across the chip before
needing to be registered. Figure 9 shows a single registered repeater on both the req and the grant
signals. While these registered repeaters would “break” any of the previous designs discussed,
this design will continue to function regardless of the number of repeaters required.

To allow the FIFO to stream requests properly, the queue in the arbitration logic needs to be at
least as large as the total number of registers on the path from the output of the req resister,
through the arbiter, and back to the req register's input. For the example shown in Figure 9, the
queue depth should be at least five (Req repeater + Arbiter Queue + Grant register + Grant
repeater + Read pointer limit register).

Rd Ptr

Req
GrantArbiter

Arbitration Logic

Rd Ptr Sent
Next

Next

Go

Pop

Not
Full

FIFO

NextPush
Wr Ptr
SNUG Boston 2001 8 Arbiters: Design Ideas and Coding Styles

Figure 9. Latency Independent Design

2.4.1 A Few Words about FIFO Pointers
The functionality that was added to the FIFOs in Figures 7, 8, and 9 could have been implemented
with up/down counters instead of the pointers that were shown. For example, rdptr_plus1 and
rdptr_sent could have been replaced with a count of how many elements were in the FIFO. This
counter would increment on a push and decrement on grant (see Figure 7), go (see Figure 8), or
req (see Figure 9). The last_req register in Figure 7 would then simply get loaded with next_count
= 1. In Figure 8, a req could be sent as long as the count was not equal to zero. Similarly, the
rdptr_limit pointer in Figure 9 could be replaced by a “Number of Reqs Available” counter which
resets to the arbitration logic's queue depth, decremented on req, and incremented on grant.

While using up/down counters like these would be functionally correct, it is generally less
efficient for both timing and area. A compare versus a constant (e.g., count = = 1) will be smaller
and faster than a compare between two variables (e.g., next_wrptr != next_rdptr_sent). However,
this benefit is usually more than offset by the increased area and path delay of an up/down counter
versus a simple incrementing counter.

Another choice for implementing this functionality is to code the counters as one-hot shift
registers. This type of implementation can be very fast. However, for deep FIFO’s, the area
required may be undesirable.

Req Grant
Arbiter

Arbitration Logic

Wr Ptr
Next

Pop

FIFO

Push

Rd Ptr Sent
Next

Next

Next

Rd Ptr

Rd Ptr Limit
SNUG Boston 2001 9 Arbiters: Design Ideas and Coding Styles

3.0 Simple Priority Arbiter

3.1 Description
One common arbitration scheme is the simple priority arbiter. Each requester is assigned a fixed
priority, and the grant is given to the active requester with the highest priority. For example, if the
request vector into the arbiter is req[N-1:0], req[0] is typically declared the highest priority. If
req[0] is active, it gets the grant. If not, and req[1] is active, grant[1] is asserted, and so on. Simple
priority arbiters are very common when choosing between just a few requesters. For example, a
maintenance port may always be lower priority than the functional port. ECC corrections may
always be higher priority than all other requests.

Priority arbiters are also often used as the basis for other types of arbiters. A more complex arbiter
may reorder the incoming requests into the desired priority, run these scrambled requests through
a simple priority arbiter, then unscramble the grants which come out. Several examples of this can
be seen in the round-robin arbiters as discussed in Section 4.0.

3.2 Coding Styles

3.2.1 Coding a Priority Arbiter with a Case Statement
The most common way of coding a priority arbiter is with a case statement as shown in Listing 3.

Listing 3
casez (req[3:0])

4'b???1 : grant <= 4'b0001;
4'b??10 : grant <= 4'b0010;
4'b?100 : grant <= 4'b0100;
4'b1000 : grant <= 4'b1000;
4'b0000 : grant <= 4'b0000;

endcase

This coding style works fine in small cases. However, when a larger priority encoder is needed,
generally as part of a more complex arbitration scheme, it gets to be a lot of typing and mistakes
are easy to make.

3.2.2 Coding a Priority Arbiter with Three Assign Statements
For a much simpler method of coding a priority arbiter, first look at the logic that is required as
shown in Listing 4.

Listing 4
grant[0] = req[0];
grant[1] = ~req[0] & req[1];
grant[2] = ~req[0] & ~req[1] & req[2];
...etc...

A bit in the grant signal will be active if its corresponding request signal is active, and there are no
higher priority requests. By introducing an intermediate term called higher_priority_reqs, the
arbitration can be coded with three assign statements. If desired, it can even be parameterized as
shown in Listing 5.
SNUG Boston 2001 10 Arbiters: Design Ideas and Coding Styles

Listing 5
parameter N = 16; // Number of requesters

// For example, higher_pri_reqs[3] = higher_pri_reqs[2] | req[2];
assign higher_pri_reqs[N-1:1] = higher_pri_reqs[N-2:0] | req[N-2:0];
assign higher_pri_reqs[0] = 1'b0;
assign grant[N-1:0] = req[N-1:0] & ~higher_pri_reqs[N-1:0];

3.2.3 Using Design Ware
Designers with a license for the Synopsys DesignWare Foundation library have another choice for
building a priority arbiter. DW_arbiter_sp is a parameterized arbiter with a fixed priority scheme.
This component includes several features which may be useful at times, or they can be removed
by Design Compiler. The mask feature prevents some requesters from participating in the
arbitration. The lock feature allows the granted requester to lock the arbiter and continue to
receive grants, regardless of the state of other requesters, until the lock input is released. The park
feature, which can be disabled by setting the appropriate instantiation parameter, sets a default
grant if there are no active requesters. The DesignWare arbiter component includes registering of
the grant signal, so using the park feature can save a clock cycle if the first requester to come on
after an idle period is the “parked” requester. One potential disadvantage of the DesignWare
component is that its registers are implemented with asynchronous resets, which sometimes cause
difficulty in static timing and testability.

3.3 Synthesis Setup
The coding styles investigated were generally implemented for three different sizes of arbiters:
four requesters, sixteen requesters, and sixty-four requesters. The DesignWare component
supports a maximum of thirty-two requesters, so it was only implemented for arbiters of four and
sixteen requesters. Because the DesignWare component includes a register on the grant signal, the
FIFO to Arbiter interface from Figure 7 was used. The designs were synthesized using a 0.18
micron technology. Listings 6 and 7 show the major portions of the build and constraint scripts
used with Design Compiler v2000.11.

Listing 6 - compile.tcl
Read in FIFO code
foreach SUB_DESIGN $SUB_DESIGNS {

set V_SRC [format "%s%s" $SUB_DESIGN ".v"]
analyze -format verilog $V_SRC

}

Read in Arbiter code
set V_SRC [format "%s%s" $TOP_DESIGN ".v"]
read_verilog $V_SRC
current_design $TOP_DESIGN
source $CON_DIR/$CON_FILE
link
uniquify
compile -map medium
Get rid of any design ware and sub designs
ungroup -all -flatten
compile -incremental
Separate FIFO timing paths from Arbiter timing paths
group-path -name FIFO -to [req_fifo*req*/*D*]
SNUG Boston 2001 11 Arbiters: Design Ideas and Coding Styles

Listing 7 - constrain.tcl
Use 0.3ns for flop->output. Although unrealistic, add 0ns
for top level nets so critical path stays in arbiter
instead of moving to FIFO.
set IN_DELAY 0.3
set OUT_DELAY [expr $CLOCK_PERIOD - 0.3]
set CLOCK_PORT [get_ports clk]
set RESET_PORT [get_ports rst]
Assume reset will have buffer tree built for it later
set_wire_load_model -name NONE $RESET_PORT
set_drive 0 $RESET_PORT
Constrain flop -> flop paths
create_clock -period $CLOCK_PERIOD -name CLK $CLOCK_PORT
set_dont_touch_network [get_clocks CLK]
Constrain input -> flop paths
create_clock -period $CLOCK_PERIOD -name IO_VIRTUAL_CLK
set input_list [remove_from_collection [remove_from_collection [all_inputs]
$CLOCK_PORT] $RESET_PORT]
set_input_delay -max $IN_DELAY -clock IO_VIRTUAL_CLK $input_list
group_path -name INPUT -from $input_list
Constrain flop -> output paths
set_output_delay -max $OUT_DELAY -clock IO_VIRTUAL_CLK [all_outputs]

Since the primary objective was to see how fast the designs would run, synthesis was run
iteratively, each time with a faster clock speed until the “fastest” design was achieved for each
size of arbiter. This was then used as the target frequency for the final synthesis run which gave
the results shown in Tables 1 through 3.

3.4 Synthesis Results
Tables 1, 2, and 3 show the timing, area, and compile time required for each of the designs. While
the design which used the DesignWare component was slower, the “case” and “assign” coding
styles were generally comparable. Because it is easier to code, the “assign” coding style is the
preferred choice for priority arbiters.

Table 1: Timing Results for Priority Arbiters
(Delay of Longest Path in ns)

Arbiter Size 64 16 4

DesignWare - - - 2.26 1.51

Case 1.60 1.51 0.97

 Assign 1.59 1.50 1.08
SNUG Boston 2001 12 Arbiters: Design Ideas and Coding Styles

4.0 Round-Robin Arbiter

4.1 Description
The key shortcoming of priority arbiters is that, in very busy systems, there is no limit to how long
a lower priority request may need to wait until it receives a grant. A round-robin arbiter on the
other hand allows every requester to take a turn in order. A pointer register is maintained which
points to the requester who is next. If that requester is active, it gets the grant. If not, the next
active requester gets the grant. The pointer is then moved to the next requester. In this way, the
maximum amount of time that a requester will wait is limited by the number of requesters.

4.2 Coding Styles
There are many different ways that a round-robin arbiter can be coded. Contrary to the results
seen with priority arbiters, the coding style used to implement a round-robin arbiter can have a
significant effect on the synthesis results obtained. Several possibilities for coding a round-robin
arbiter are explored.

4.2.1 Coding a Big Blob
The first method of coding a round-robin arbiter is shown in Listing 8. The arbiter is implemented
with nested case statements. I actually taped out a chip with an arbiter coded like this....once.
There are a few side effects of this coding style. The most noticeable side effect is called carpel-
tunnel-vision syndrome. This condition is characterized by sore fingers and wrists caused by
failing to look around enough to see a better way of coding your design.

Table 2: Area Results for Priority Arbiters

 Arbiter Size 64 16 4

DesignWare - - - 8250 2035

 Case 32778 8101 2014

 Assign 34260 8576 2166

Table 3: Compile Time Results for Priority Arbiters

Arbiter Size 64 16 4

DesignWare - - - 7 min 2 min

 Case 27 min 7 min 2 min

Assign 21 min 8 min 3 min
SNUG Boston 2001 13 Arbiters: Design Ideas and Coding Styles

Listing 8
always @ (/*AUTOSENSE*/pointer_reg or req) begin

case (pointer_reg) // synopsys full_case parallel_case
2'b00 :

if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else grant = 4'b0000;

2'b01 :
if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else grant = 4'b0000;

2'b10 :
if (req[2]) grant = 4'b0100;
else if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else grant = 4'b0000;

2'b11 :
if (req[3]) grant = 4'b1000;
else if (req[0]) grant = 4'b0001;
else if (req[1]) grant = 4'b0010;
else if (req[2]) grant = 4'b0100;
else grant = 4'b0000;

endcase // case(req)
end

4.2.2 Rotate + Priority + Rotate
Perhaps the most common method of coding a round-robin arbiter is built on top of a simple
priority arbiter. The requester that is pointed to by the round-robin pointer is shifted to the highest
priority position, and the other requests are rotated in behind it. This rotated request vector is then
sent through a simple priority arbiter. The grant vector from the priority arbiter is then “unrotated”
to come up with the round-robin arbiter’s final grant signal. This is shown in the block diagram of
Figure 10.

Figure 10. Round-Robin Arbiter: Rotate + Priority + Rotate

The rotate can be coded with a case statement as shown in Listing 9. A more compact method
using Verilog’s shift operator is shown in Listing 10. The synthesis results reported in Section 4.3
used the shift operater.

Rotate RotateSimple
PriorityN N N N

Req Grant

Pointer

log2N
SNUG Boston 2001 14 Arbiters: Design Ideas and Coding Styles

Listing 9
always @ (/*AUTOSENSE*/pointer_reg or req) begin

case (pointer_reg) // synopsys full_case parallel_case
2'b00 : req_shifted[3:0] = req[3:0];
2'b01 : req_shifted[3:0] = {req[0],req[3:1]};
2'b10 : req_shifted[3:0] = {req[1:0],req[3:2]};
2'b11 : req_shifted[3:0] = {req[2:0],req[3]};

endcase // case(pointer_reg)
end // always @ (...

Listing 10
// The shift operator fills in vacated bits
// with zeros. We would like it filled in with
// the bits that were pushed out. This is implemented
// by concatenating req onto itself, doing a shift,
// then taking the rightmost bits.
assign req_shifted_double[31:0] = {req[15:0],req[15:0]} >> pointer_reg;
assign req_shifted[15:0] = req_shifted_double[15:0];

4.2.3 Muxed Parallel Priority Arbs: Fast, but Big
Another method of constructing a round-robin arbiter for N requesters using N simple priority
arbiters arranged in parallel is shown in Figure 11. The “rotate i” blocks which precede the simple
priority arbiters rotate the req to the right by “i” positions. These blocks contain no logic; they are
wires only. The inputs to the mux are then the grant vectors for every possible value of the round-
robin pointer. The pointer controls the mux which selects which of the intermediate grant vectors
will actually be used. Both the mux in this example and the rotate in the previous design can be
implemented with a 2:1 mux tree with lgN stages. Therefore, this design, with only one mux tree
in the critical path, is expected to be faster than the previous design. Unfortunately, for arbiters
with a large number of requesters, the area of this design is expected to blow up due to the large
number of priority arbiters it contains.

Figure 11. Round-Robin Arbiter: Parallel Priority Arbiters

Rotate 0

Rotate 1

Rotate N-1

Simple
Priority

Simple
Priority

Simple
Priority

N

N

N

N N

N

N

N
Req

Pointer

Grant
SNUG Boston 2001 15 Arbiters: Design Ideas and Coding Styles

4.2.4 Using Two Simple Priority Arbiters with a Mask
A round-robin design which generally gives good results for both area and timing is shown in
Figure 12. This design uses two priority arbiters. One of the priority arbiters is fed with the entire
request signal, while the other one first masks out any requests which come before the one
selected by the round-robin pointer. The mask is built from the round-robin pointer as shown in
Listing 11. If a grant is selected by the upper arbiter, the mux chooses that grant for the final
result, otherwise the result from the lower arbiter is used. Since NoMask = 0 implies that
MaskGrant = 0, the mux can be simplified somewhat as shown in the lower portion of Figure 12.

The path from req to grant has now been reduced to the simple priority arbiter, two And gates, and
an Or gate. Therefore, if the req to grant path is the critical path, this design is expected to have
the best performance of the designs presented here.

Figure 12. Round-Robin Arbiter: “Mask” Method

Listing 11
// Build the mask
always @ (/*AUTOSENSE*/pointer_reg) begin

case (pointer_reg) // synopsys full_case parallel_case
2'b00: req_mask <= 4'b1111;
2'b01: req_mask <= 4'b1110;
2'b10: req_mask <= 4'b1100;
2'b11: req_mask <= 4'b1000;

endcase
end

= 0

Simple
Priority

Simple
Priority

N N

N

N

N
N

Req

Pointer

Grant

No Mask

Mask Grant

Unmask Grant

N

Mask Grant

No Mask

N

Unmask Grant

N

Grant

log2N
SNUG Boston 2001 16 Arbiters: Design Ideas and Coding Styles

4.2.5 DesignWare
The Synopsys DesignWare Foundation library also includes an arbiter with a dynamic priority
scheme called DW_arbiter_dp. In this arbiter, each of the N requesters sends not only a request,
but also a ceil(log2N) bit priority to the arbiter. By properly controlling the priority inputs from
each requester, this arbiter could be used to build a round-robin arbiter. However, the extra
flexibility makes comparisons to the other round-robin designs unfair so the DesignWare part was
not included in this study.

4.3 Synthesis Results
Tables 4, 5, and 6 show the timing, area, and compile time required for each of the designs.

Table 4: Timing Results for Round-Robin Arbiters

 Arbiter Size 64 16 4

Mux 3.20 2.09 1.60

Mask 2.90 2.03 1.57

Shift 4.33 2.84 1.74

Blob - - - 1.97 1.58

Table 5: Area Results for Round-Robin Arbiters

 Arbiter Size 64 16 4

Mux 35786 8739 2184

Mask 29588 7736 2226

Shift 37076 8991 2187

Blob - - - 7758 2175

Table 6: Compile Time Results for Round-Robin Arbiters

Arbiter Size 64 16 4

Mux 67 min 10 min 3 min

Mask 26 min 7 min 2 min

Shift 90 min 24 min 2 min

Blob - - - 7 min 2 min
SNUG Boston 2001 17 Arbiters: Design Ideas and Coding Styles

As expected, the mask and mux coding styles were the fastest implementations. Because the
sixty-four requester version of the mux design starts with sixty-four priority arbiters in parallel,
the area of this design was expected to be much higher than the mask design. The results show the
mux design with about 20% greater area than the mask design for an arbiter with sixty-four
requesters. Also, Design Compiler worked for about two and one-half times as long on the mux
design as it did on the mask design.

Design Compiler was able to optimize the “blob” coding style to similar speed and area results as
the mask design for four and sixteen requesters. However, a sixty-four requester version of this
coding style was not implemented due to the amount of tedious typing it would have required.

The surprising result was the poor results seen with the shift coding style. With sixty-four
requesters, its performance was 50% slower than the other coding styles. It also had the largest
area and the longest compile time.

4.4 Common Variations
4.4.1 Round-Robin Pointer Implementations
For some architectures, there may be an advantage to having the round-robin pointer implemented
as a one-hot vector. Synthesis results for using a one-hot pointer are shown in Tables 7, 8, and 9.
Also, the mask coding style could benefit from having the mask value stored as the pointer, rather
than needing to calculate it from the pointer. This is also shown in Tables 7, 8, and 9 as the
mask_expand design.

Table 7: Timing Results for Round-Robin Arbiters

 Arbiter Size 64

mask_onehot 2.72

mask_expand 2.70

mux_onehot 2.70

Table 8: Area Results for Round-Robin Arbiters

Arbiter Size 64

mask_onehot 27684

mask_expand 27430

mux_onehot 34192
SNUG Boston 2001 18 Arbiters: Design Ideas and Coding Styles

For both the mask and mux designs, one hot encoding of the round-robin pointer was beneficial
for both area and timing. The mask_expand design, however is the fastest and smallest of all the
round-robin designs investigated. It is also the fastest to compile and requires the fewest number
of lines to code. This is because the pointer update equations can be built almost entirely from
existing logic. If the two priority arbiters which are used in the mask design are coded with the
“three assign” technique shown in Listing 5, the next value of the pointer register is the
higher_pri_reqs signal from either the masked or unmasked arbiter. The final code for this round-
robin arbiter is shown in Listing 12.

Listing 12 - mask_expand round-robin arbiter
// Simple priority arbitration for masked portion
assign req_masked = req & pointer_reg;
assign mask_higher_pri_reqs[N-1:1] = mask_higher_pri_reqs[N-2: 0] |
req_masked[N-2:0];
assign mask_higher_pri_reqs[0] = 1'b0;
assign grant_masked[N-1:0] = req_masked[N-1:0] & ~mask_higher_pri_reqs[N-1:0];

// Simple priority arbitration for unmasked portion
assign unmask_higher_pri_reqs[N-1:1] = unmask_higher_pri_reqs[N-2:0] | req[N-2:0];
assign unmask_higher_pri_reqs[0] = 1'b0;
assign grant_unmasked[N-1:0] = req[N-1:0] & ~unmask_higher_pri_reqs[N-1:0];

// Use grant_masked if there is any there, otherwise use grant_unmasked.
assign no_req_masked = ~(|req_masked);
assign grant = ({N{no_req_masked}} & grant_unmasked) | grant_masked;

// Pointer update
always @ (posedge clk) begin

if (rst) begin
pointer_reg <= {N{1'b1}};

end else begin
if (|req_masked) begin // Which arbiter was used?

pointer_reg <= mask_higher_pri_reqs;
end else begin

if (|req) begin // Only update if there's a req
pointer_reg <= unmask_higher_pri_reqs;

end else begin
pointer_reg <= pointer_reg ;

end
end

end

Table 9: Compile Time Results for Round-Robin Arbiters

 Arbiter Size 64

mask_onehot 34 min

 mask_expand 13 min

 mux_onehot 49 min
SNUG Boston 2001 19 Arbiters: Design Ideas and Coding Styles

end
SNUG Boston 2001 20 Arbiters: Design Ideas and Coding Styles

4.4.2 Round-Robin Pointer Updating
There are three basic methods for updating the round-robin pointer:

1. After a grant, increment the pointer.
2. After a grant, move the pointer to the requester after the one which just received the grant.
3. After a grant, move the pointer to the first Active requester after the one which just

received the grant.

The first method is sometimes considered unfair because a single requester can receive back-to-
back grants, even if other requesters are active. For example, if requesters 7, 9, and 10 are active,
and the pointer is on requester 2, requester 7 will receive six grants in a row before the pointer is
beyond it and requesters 9 and10 will be allowed access.

This fairness issue is fixed in the second method. Advancing the pointer to the location after the
grant automatically puts the recently granted signal as the lowest priority request on the next
cycle. This method was used for the results reported in Tables 4 through 9.

Some of the arbiter’s performance statistics can be improved slightly by using the third method.
Continuing with the example above, after the grant is given to requester 7, method two will
update the pointer to requester 8, while method three will update the pointer to requester 9. If
requester 8 becomes active in this cycle, method two will give it an immediate grant, while
method three will continue to grant requesters 9 and 10 before coming back around to requester 8.
The average latency of all requesters will be the same in either case. However, the latency
variance will be less with method three, and the max latency may be less with method three.
Whether or not this translates into improved system performance depends on the system’s
requirements.

One of the difficulties with implementing the third pointer update method is meeting timing on
the pointer update. A common method essentially requires going through two arbitrations to
determine the next pointer value. First, the traditional arbitration is run to determine the grant
vector. Then, the req from the winning requester is negated and the second arbiter is run to
determine which of the remaining valid requesters (if any) is the first one after the granted
requester. Because this path runs through two arbiters, it often becomes the critical path.

An alternate method which achieves the same results as method 3 is shown in Figure 13. In this
design, the pointer updates like method 2, but some logic has been added so that the arbiter will
give the same results as a method 3 update. This is achieved by running two arbiters in parallel.
The lower arbiter uses the current request vector as its inputs. The upper arbiter uses as its inputs
the request vector from the previous cycle, except for the requester which was granted and any
requests which have been dropped. If there are any results from the upper arbiter, its results are
used, otherwise the standard arbiter results are used. This design adds only a 2:1 mux and a couple
of And gates to the timing path. This should be much easier to close timing than the design which
had two arbiters in series.
SNUG Boston 2001 21 Arbiters: Design Ideas and Coding Styles

Figure 13. Alternate Use of Round-Robin Pointer

4.0 Conclusions
This paper presented several different methods for interfacing to an arbiter. Which method is the
best one to use for a particular design depends on the size and speed of the chip that is being built.
Options were presented which cover a wide range of potential applications.

Two common arbitration schemes were then investigated. For priority arbiters, it was shown that
the primary consideration for coding style is ease of writing, reading, and maintaining the code. A
simple three-line implementation was shown to accomplish these goals. For round-robin arbiters,
the coding style can greatly influence the quality of synthesis results. For all metrics, the “mask”
coding style with the round-robin pointer stored as the mask, was shown to be superior to other
common coding styles.

References
[1] Pankaj Gupta, “On the Design of Fast Arbiters”, Oct 2, 1997.

[2] Synopsys, Inc., “DesignWare Foundation Library Databook, Volume 2”, v2000.11,
pp 111-126.

[3] Jonathan Chao, “Saturn: A Terabit Packet Switch Using Dual Round-Robin”, IEEE
Communications Magazine, vol 38, no 12, December 2000, pp 78-84.

Synopsys is a registered trademark of Synopsys, Inc.

Design Compiler is a trademark of Synopsys, Inc.

Left
Shift

N N N
N

Req
Grant

0

Round
Robin
Arb

Round
Robin
Arb

Req Saved

N

N

Round
Robin

Pointer
SNUG Boston 2001 22 Arbiters: Design Ideas and Coding Styles

	Arbiters: Design Ideas and Coding Styles
	1.0 Introduction
	2.0 Interfacing to an Arbiter
	2.1 Example Requesters
	2.1.1 State Machine Requester
	2.1.2 FIFO Requester

	2.2 Basic Request - Grant
	2.2.1 Simple Interface
	Figure 1. Simple Interface
	Figure 2. Interface Timing

	2.2.2 Register the Request
	Figure 3. FIFO to Arb Interface with Registered Request

	2.3 Registering the Request and the Grant
	2.3.1 The Problem with Registering the Grant Signal
	Figure 4. Registered Grant - Bad Design
	Figure 5. Timing Error of Registered Grant

	2.3.2 One Simple Fix
	Figure 6. Registered Grant - Okay Design

	2.3.3 Regain Performance with the last_req Signal
	Figure 7. Using a last_req Signal

	2.3.4 Add a Small Queue to the Arbitration Logic
	Figure 8. Adding a Queue to the Arbitration Logic

	2.4 Big Chips - Registered Repeaters on Req and Grant
	Figure 9. Latency Independent Design
	2.4.1 A Few Words about FIFO Pointers

	3.0 Simple Priority Arbiter
	3.1 Description
	3.2 Coding Styles
	3.2.1 Coding a Priority Arbiter with a Case Statement
	3.2.2 Coding a Priority Arbiter with Three Assign Statements
	3.2.3 Using Design Ware

	3.3 Synthesis Setup
	3.4 Synthesis Results
	Table 1: Timing Results for Priority Arbiters (Delay of Longest Path in ns)
	Table 2: Area Results for Priority Arbiters
	Table 3: Compile Time Results for Priority Arbiters

	4.0 Round-Robin Arbiter
	4.1 Description
	4.2 Coding Styles
	4.2.1 Coding a Big Blob
	4.2.2 Rotate + Priority + Rotate
	Figure 10. Round-Robin Arbiter: Rotate + Priority + Rotate

	4.2.3 Muxed Parallel Priority Arbs: Fast, but Big
	Figure 11. Round-Robin Arbiter: Parallel Priority Arbiters

	4.2.4 Using Two Simple Priority Arbiters with a Mask
	Figure 12. Round-Robin Arbiter: “Mask” Method

	4.2.5 DesignWare

	4.3 Synthesis Results
	Table 4: Timing Results for Round-Robin Arbiters
	Table 5: Area Results for Round-Robin Arbiters
	Table 6: Compile Time Results for Round-Robin Arbiters

	4.4 Common Variations
	4.4.1 Round-Robin Pointer Implementations
	Table 7: Timing Results for Round-Robin Arbiters
	Table 8: Area Results for Round-Robin Arbiters
	Table 9: Compile Time Results for Round-Robin Arbiters
	4.4.2 Round-Robin Pointer Updating
	1. After a grant, increment the pointer.
	2. After a grant, move the pointer to the requester after the one which just received the grant.
	3. After a grant, move the pointer to the first Active requester after the one which just receive...
	Figure 13. Alternate Use of Round-Robin Pointer

	4.0 Conclusions

