
98

TUTORIAL

Going straight with PID

How to make your Raspberry Pi robot drive in a straight line

Going straight with PID

T
here is more to making a robot go in
a straight line than just turning the
motors on full power – in this tutorial
you’ll learn how to add encoders
to your robot and implement a PID
controller to regulate the power.

Anyone who has ever built a wheeled robot will know
that driving in a straight line is a lot more difficult than
you first think. Sure, holding a true heading for 1, 2 or
maybe 3 metres is possible, but keeping it up past 10
or 20 metres without a veer to the left or right becomes
astonishingly tricky.

There are many reasons why this happens – uneven
surfaces, differences in wheel size, bent axles and, most
significantly, the fact that no two motors turn at the
same speed! Minor differences in manufacturing and
materials result in minor differences in output, and as a
result, one motor will spin more quickly than the other.
This difference may well be very small, but over time (or
distance), it will show as your robot beginning to veer. If
the right motor is moving quicker, your robot is going to
turn in an arc to the left, and vice versa.

To counter this problem, a solution is required that
can accurately measure how fast each motor is moving

YOU’LL NEED

Raspberry Pi
wheeled robot

Two motor/wheel
encoders

and then use this feedback to adjust the motor’s
speed at run-time so that each motor spins at the
same rate.

Encoders are typically used to measure motor
speed; these devices provide an output (or pulse)
multiple times per revolution.

A PID (proportional-integral-derivative) controller is
then used to continuously monitor and adjust motor
speed to keep them in sync.

This tutorial steps through adding encoders to a
Raspberry Pi-powered robot, using Python to create
a PID controller, tuning it to work with your robot,
and using the GPIO Zero (gpiozero.readthedocs.io)
library to interact with the hardware.

ENCODERS
Encoders come in all shapes, sizes and accuracy. They
can be incorporated into motors themselves or as
add-ons that connect to the motor shaft or the wheel,
but fundamentally they all work in the same way – a
consistent signal is provided as the motor turns; the
faster the motor is turning, the faster the signal.

A typical robot setup includes a motor controller (or
maybe a dedicated HAT), two motors, and a battery
pack. In addition, you will need an encoder per motor
connected to your Raspberry Pi.

Most encoders will have three or four pins (power,
ground, and one or two signal pins); typically the power
and ground pins will be connected to a 3.3 V and a
ground (GND) pin on your Pi; one of the signal pins
should be connected to a spare GPIO pin. It’s important
to check the specifications of your encoders before
connecting them up to the Raspberry Pi.

Any Python IDE will do
1. Open up a Python 3 editor (e.g. Thonny) and create
a new program.

2. Import the required Python modules:

from gpiozero import Robot, DigitalInputDevice
from time import sleep

3. Create a constant for sample time – this is how
often (in seconds) your program will read the values

Right
A typical Raspberry
Pi robot setup with
controller, battery,
two motors, and
two encoders

Encoder Encoder

Martin O’Hanlon

@martinohanlon

Martin is the co-author
of Adventures in
Minecraft, a Raspberry
Pi trainer, and blogger
at stuffaboutco.de

FORGE

99

from the encoders – it’s likely that you will need to
change this value later to get the best result from
your setup:

SAMPLETIME = 1

4. Create an Encoder class to monitor your encoders;
this will increment a value each time the pin turns on
and off.

class Encoder(object):
 def __init__(self, pin):
 self._value = 0

 encoder = DigitalInputDevice(pin)
 encoder.when_activated = self._increment
 encoder.when_deactivated = self._increment

 def reset(self):
 self._value = 0

 def _increment(self):
 self._value += 1

@property
 def value(self):
 return self._value

5. Use the gpiozero Robot class to connect to your motor
hardware; each motor will connect to two GPIO pins
(one forward, one back), specified as ((left_forward,
left_backward), (right_forward, right_backward)) – our
robot uses the pins ((10,9), (8,7)):

r = Robot((10,9), (8,7))

6. Create two Encoder objects passing the GPIO pin the
signal connects too; we’ve used GPIO pins 17 and 18:

e1 = Encoder(17)
e2 = Encoder(18)

7. Start the robot by making the value of both motors
1.0 (forward at full speed):

m1_speed = 1.0
m2_speed = 1.0
r.value = (m1_speed, m2_speed)

8. Start an infinite loop and print the encoder values:

while True:
 print("e1 {} e2 {}".format(e1.value, e2.value)
 sleep(SAMPLETIME)

9. Run the program.

View the complete encoder.py code listing at
github.com/martinohanlon/RobotPID.

The SAMPLETIME value should be changed to reflect
your hardware; you need to find a balance between
reading it frequently enough to get good results and
slow enough to capture sufficient encoder ticks – try
values between 0.1 and 1.0 seconds and aim to capture
more than 20 ticks per sample.

Make a note of approximately how many encoder
ticks per sample your robot makes.

PID CONTROLLER
A PID controller continuously calculates an error
and applies a corrective action to resolve the error;
in this case, the error is the motor spinning at the
wrong speed and the corrective action is changing
the power to the motor. It is this continuous testing
of the motor’s speed and adjusting it to the correct
speed which will make your robot’s motors spin at the
correct speed and go straight.

PID is a ‘control loop feedback’ mechanism
The controller will have a target motor speed that it
wishes to maintain; each time the encoder values
are sampled, it will calculate the difference (or error)

TWO-PIN
ENCODERS
Your robot maybe fitted with ‘quadrature’ encoders;
these encoders use two pins, significantly increase the
resolution, and allow the direction the motor is spinning
to be determined.

This tutorial assumes you are using simple one-pin
pulse encoders, but there is a code example at
github.com/martinohanlon/RobotPID which should allow
you to modify it. There’s also an excellent write-up at
robotoid.com/appnotes/circuits-quad-encoding.html
which explains how they work and how to interpret the
signals from them.

Above
As the right motor
spins quicker than
the left, the robot
always turns left

Below
The PID controller
adjusts the speed
over time and may
take a while to settle
to the target speed

Too fast

Too slow

Time

Motors with built-in
encoders tend to be
more expensive, but
they also have much
greater accuracy
and precision
than add-ons.

QUICK TIP

100

TUTORIAL

between the target speed and the actual speed
and apply an adjustment to the motor speed. If the
adjustment overshoots the next time the encoders
are sampled, a smaller opposite adjustment will be
made. Over time, the adjustments will even out and
the motors will run at a constant speed (or at least
that’s the theory!).

You will be changing the program you created to
read encoder values to calculate an error and apply
an adjustment using proportional, derivative, and
integral control.

PROPORTIONAL
Proportional control is adjusting the motor speed
by adding the value of the error – the value of the
error (the difference in encoder ticks between
the target and the actual speed) will need to be
converted to the motor speed (a value between
0 and 1) by multiplying a constant (KP) to get a
‘proportional’ change:

adjustment = error x KP

Time for maths
Modify the program you created earlier to read
encoder values:

1. Add a constant for the target of encoder ticks you
want the motors to achieve; make this value about
75% of the ‘encoder ticks per sample’ value you
made a note of earlier (in our case 60 × 0.75 = 45):

TARGET = 45

2. Add a constant (KP) for the proportional change
which will be multiplied by the error to create the
motor adjustment. This constant will need tuning,
but a good starting point is 1 divided by the ‘encoder
ticks per sample’ (e.g. 1 / 60 = 0.0166~)

KP = 0.02

Going straight with PID

3. At the start of the infinite loop, calculate the error
for each motor by subtracting the encoder value from
the target:

while True:
 e1_error = TARGET - e1.value
 e2_error = TARGET - e2.value

4. Calculate the new motor speed by adding the error
and multiplying it by the proportional constant:

 m1_speed += e1_error * KP
 m2_speed += e2_error * KP

5. The motor speed needs to be between 0 and 1, so
clamp the value using max and min:

 m1_speed = max(min(1, m1_speed), 0)
 m2_speed = max(min(1, m2_speed), 0)

6. Update the robot’s speed to the new motor values:

 r.value = (m1_speed, m2_speed)

7. Add some debugging code to print the motor
speed after the encoder values; this will be useful
for tuning:

 print("e1 {} e2 {}".format(e1.value, e2.value))
 print("m1 {} m2 {}".format(m1_speed, m2_speed))

8. Before the program sleeps for the sample time, you
need to reset the encoders:

 e1.reset()
 e2.reset()
 sleep(SAMPLETIME)

9. Run your program – you will see the motor’s speed
being adjusted each time the encoders are sampled,
based on the error.

How different are your motors?
View the complete proportional.py code listing at
github.com/martinohanlon/RobotPID.

Proportional control should be enough to stabilise
your motors’ speed and keep them turning at about
the correct speed, but when there is a large error or
you want the speed to adjust quickly, you will get a
large overshoot and your robot will react erratically,
swinging left to right – this is where derivative
control helps.

DERIVATIVE
Derivative control looks at how quickly or slowly the
error is changing, creating a larger error if it’s changing
quickly and a smaller one if slowly. This will help to
smooth out the rate of change and prevent erratic
changes in speed.

OTHER
PID USES

The input and
outputs of a PID
controller don’t
have to be an
encoder and
a motor; the
controller can
be applied to any
situation where
something needs
to be constantly
monitored and
adjusted. This
could be:

 Using a
magnetometer
to make a
robot move in a
certain direction

 Keeping a
camera on a
powered mount
pointing at the
same place

 Making a robot
follow a wall by
measuring the
distance to it with
ultrasonic sensors

PID controllers are
universal devices
and the rules
can be applied
to solve many
different problems.

Right
Our encoders tick
about 50 to 60 times
per sample and
motor 2 runs slightly
faster than motor 1

FORGE

101

This is achieved by taking the previous error into
account when calculating the adjustment and again
multiplying by a constant (KD):

adjustment = (error × KP) + (previous_error × KD)

Modify the program to implement derivative control…

1. Create a new constant (KD) for the derivative
control. Again, this value will need to be changed to get
the best results for your setup; a good starting value is
half the value of KP:

KD = 0.01

2. Create two variables to hold the previous errors and
set them to 0:

e1_prev_error = 0
e2_prev_error = 0

3. Modify the code which calculate the speeds for
motor 1 and 2 to taken into account the previous error:

 m1_speed += (e1_error * KP) + (e1_prev_error
* KD)
 m2_speed += (e2_error * KP) + (e1_prev_error
* KD)

4. At the end of the loop, set the previous error
variables to be that of the current error:

 sleep(SAMPLETIME)
 e1_prev_error = e1_error
 e2_prev_error = e2_error

5. Run your program. Again you will see the motor
speed change in relation to error and over time, it
should stabilise to a more consistent speed.

Proportional and derivative (PD) control should
provide a good level of performance but may not
provide consistency of speed over time – integral
control can help to bring this stability.

INTEGRAL
Integral control helps to deliver steady state
performance by adjusting for slowly changing errors.
It does this by keeping a sum of all the previous errors
and applying a constant (KI) to the adjustment:

adjustment = (error × KP) + (previous_error × KD)
+ (sum_of_errors × KI)

Modify the program to implement integral control:

1. Create a constant for the integral control (KI); a
good starting point is half the value of KD:

KI = 0.005

2. Create two variables to hold the sum of all previous
errors and set them to 0:

e1_sum_error = 0
e2_sum_error = 0

3. Modify the speed calculation to take into account
the sum:

 m1_speed += (e1_error * KP) + (e1_prev_error *
KD) + (e1_sum_error * KI)
 m2_speed += (e2_error * KP) + (e1_prev_error *
KD) + (e2_sum_error * KI)

4. At the end of the loop, increment the sum variables
by the current error value:

 sleep(SAMPLETIME)
 e1_sum_error += e1_error
 e2_sum_error += e2_error

5. Run the program. You should see over time that the
motor speeds start to stabilise.

TUNING YOUR SETUP
To get PID control working for your setup, it will need to be tuned; this will involve modifying the
constants KP, KD, and KI. There is no exact science to this and there will be a certain amount of
trial, error, and intuition required before you find the right setup for your robot.

The following tips however should improve your tuning:
1. Start by modifying the KP constant and get the performance as good as you can before

moving onto KD and then finally KI.

2. If the motor adjustments are too aggressive, swinging between too fast and too slow, reduce
the constant.

3. If the motor speed isn’t changing fast enough, increase the constant.

4. Make any change in small increments; even a very small change can have a dramatic effect.

Once tuned, each motor should settle down to a speed which is close to the encoder target.

Left
Thanks to a pair of
controllers and PID,
our robot now runs in
a straight line

You may not have
to implement
proportional, integral
and derivative (PID)
control to get your
robot to go straight:
P or PD might be
good enough.

QUICK TIP

