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TUTORIAL

Going straight with PID

How to make your Raspberry Pi robot drive in a straight line

Going straight with PID

T
here is more to making a robot go in 
a straight line than just turning the 
motors on full power – in this tutorial 
you’ll learn how to add encoders 
to your robot and implement a PID 
controller to regulate the power.

Anyone who has ever built a wheeled robot will know 
that driving in a straight line is a lot more difficult than 
you first think. Sure, holding a true heading for 1, 2 or 
maybe 3 metres is possible, but keeping it up past 10 
or 20 metres without a veer to the left or right becomes 
astonishingly tricky. 

There are many reasons why this happens – uneven 
surfaces, differences in wheel size, bent axles and, most 
significantly, the fact that no two motors turn at the 
same speed! Minor differences in manufacturing and 
materials result in minor differences in output, and as a 
result, one motor will spin more quickly than the other. 
This difference may well be very small, but over time (or 
distance), it will show as your robot beginning to veer. If 
the right motor is moving quicker, your robot is going to 
turn in an arc to the left, and vice versa.

To counter this problem, a solution is required that 
can accurately measure how fast each motor is moving 

YOU’LL NEED

Raspberry Pi 
wheeled robot

Two motor/wheel 
encoders

and then use this feedback to adjust the motor’s 
speed at run-time so that each motor spins at the 
same rate.

Encoders are typically used to measure motor 
speed; these devices provide an output (or pulse) 
multiple times per revolution.

A PID (proportional-integral-derivative) controller is 
then used to continuously monitor and adjust motor 
speed to keep them in sync.

This tutorial steps through adding encoders to a 
Raspberry Pi-powered robot, using Python to create 
a PID controller, tuning it to work with your robot, 
and using the GPIO Zero (gpiozero.readthedocs.io) 
library to interact with the hardware.

ENCODERS
Encoders come in all shapes, sizes and accuracy. They 
can be incorporated into motors themselves or as 
add-ons that connect to the motor shaft or the wheel, 
but fundamentally they all work in the same way – a 
consistent signal is provided as the motor turns; the 
faster the motor is turning, the faster the signal.

A typical robot setup includes a motor controller (or 
maybe a dedicated HAT), two motors, and a battery 
pack. In addition, you will need an encoder per motor 
connected to your Raspberry Pi.

Most encoders will have three or four pins (power, 
ground, and one or two signal pins); typically the power 
and ground pins will be connected to a 3.3 V and a 
ground (GND) pin on your Pi; one of the signal pins 
should be connected to a spare GPIO pin. It’s important 
to check the specifications of your encoders before 
connecting them up to the Raspberry Pi.

Any Python IDE will do
1. Open up a Python 3 editor (e.g. Thonny) and create 
a new program.

2. Import the required Python modules:

from gpiozero import Robot, DigitalInputDevice
from time import sleep

3. Create a constant for sample time – this is how 
often (in seconds) your program will read the values 
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from the encoders – it’s likely that you will need to 
change this value later to get the best result from 
your setup:

SAMPLETIME = 1

4. Create an Encoder class to monitor your encoders; 
this will increment a value each time the pin turns on 
and off.

class Encoder(object): 
   def __init__(self, pin): 
        self._value = 0 
 
        encoder = DigitalInputDevice(pin) 
        encoder.when_activated = self._increment 
        encoder.when_deactivated = self._increment 
 
   def reset(self): 
        self._value = 0 
 
   def _increment(self): 
        self._value += 1 
    
@property 
   def value(self): 
        return self._value

5. Use the gpiozero Robot class to connect to your motor 
hardware; each motor will connect to two GPIO pins 
(one forward, one back), specified as ((left_forward, 
left_backward), (right_forward, right_backward)) – our 
robot uses the pins ((10,9), (8,7)):

r = Robot((10,9), (8,7)) 

6. Create two Encoder objects passing the GPIO pin the 
signal connects too; we’ve used GPIO pins 17 and 18:

e1 = Encoder(17) 
e2 = Encoder(18)

7. Start the robot by making the value of both motors 
1.0 (forward at full speed):

m1_speed = 1.0 
m2_speed = 1.0 
r.value = (m1_speed, m2_speed)

8. Start an infinite loop and print the encoder values:

while True: 
   print("e1 {} e2 {}".format(e1.value, e2.value) 
   sleep(SAMPLETIME)

9. Run the program.

View the complete encoder.py code listing at  
github.com/martinohanlon/RobotPID.

The SAMPLETIME value should be changed to reflect 
your hardware; you need to find a balance between 
reading it frequently enough to get good results and 
slow enough to capture sufficient encoder ticks – try 
values between 0.1 and 1.0 seconds and aim to capture 
more than 20 ticks per sample. 

Make a note of approximately how many encoder 
ticks per sample your robot makes.

PID CONTROLLER
A PID controller continuously calculates an error 
and applies a corrective action to resolve the error; 
in this case, the error is the motor spinning at the 
wrong speed and the corrective action is changing 
the power to the motor. It is this continuous testing 
of the motor’s speed and adjusting it to the correct 
speed which will make your robot’s motors spin at the 
correct speed and go straight. 

PID is a ‘control loop feedback’ mechanism
The controller will have a target motor speed that it 
wishes to maintain; each time the encoder values 
are sampled, it will calculate the difference (or error)

TWO-PIN
ENCODERS
Your robot maybe fitted with ‘quadrature’ encoders; 
these encoders use two pins, significantly increase the 
resolution, and allow the direction the motor is spinning 
to be determined.

This tutorial assumes you are using simple one-pin 
pulse encoders, but there is a code example at  
github.com/martinohanlon/RobotPID which should allow 
you to modify it. There’s also an excellent write-up at 
robotoid.com/appnotes/circuits-quad-encoding.html 
which explains how they work and how to interpret the 
signals from them.

Above 
As the right motor 
spins quicker than 
the left, the robot 
always turns left 

Below 
The PID controller 
adjusts the speed 
over time and may 
take a while to settle 
to the target speed 

Too fast

Too slow

Time

Motors with built-in 
encoders tend to be 
more expensive, but 
they also have much 
greater accuracy 
and precision 
than add-ons.

QUICK TIP
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between the target speed and the actual speed 
and apply an adjustment to the motor speed. If the 
adjustment overshoots the next time the encoders 
are sampled, a smaller opposite adjustment will be 
made. Over time, the adjustments will even out and 
the motors will run at a constant speed (or at least 
that’s the theory!).

You will be changing the program you created to 
read encoder values to calculate an error and apply 
an adjustment using proportional, derivative, and 
integral control.

PROPORTIONAL
Proportional control is adjusting the motor speed 
by adding the value of the error – the value of the 
error (the difference in encoder ticks between 
the target and the actual speed) will need to be 
converted to the motor speed (a value between 
0 and 1) by multiplying a constant (KP) to get a 
‘proportional’ change:

adjustment = error x KP 

Time for maths
Modify the program you created earlier to read 
encoder values:

1. Add a constant for the target of encoder ticks you 
want the motors to achieve; make this value about 
75% of the ‘encoder ticks per sample’ value you 
made a note of earlier (in our case 60 × 0.75 = 45):

TARGET = 45

2. Add a constant (KP) for the proportional change 
which will be multiplied by the error to create the 
motor adjustment. This constant will need tuning, 
but a good starting point is 1 divided by the ‘encoder 
ticks per sample’ (e.g. 1 / 60 = 0.0166~)

KP = 0.02

Going straight with PID

3. At the start of the infinite loop, calculate the error 
for each motor by subtracting the encoder value from 
the target:

while True: 
    e1_error = TARGET - e1.value 
    e2_error = TARGET - e2.value

4. Calculate the new motor speed by adding the error 
and multiplying it by the proportional constant:

    m1_speed += e1_error * KP 
    m2_speed += e2_error * KP

5. The motor speed needs to be between 0 and 1, so 
clamp the value using max and min:

    m1_speed = max(min(1, m1_speed), 0) 
    m2_speed = max(min(1, m2_speed), 0)

6. Update the robot’s speed to the new motor values:

    r.value = (m1_speed, m2_speed)

7. Add some debugging code to print the motor 
speed after the encoder values; this will be useful 
for tuning:

    print("e1 {} e2 {}".format(e1.value, e2.value)) 
    print("m1 {} m2 {}".format(m1_speed, m2_speed))

8. Before the program sleeps for the sample time, you 
need to reset the encoders:

    e1.reset() 
    e2.reset() 
    sleep(SAMPLETIME)

9. Run your program – you will see the motor’s speed 
being adjusted each time the encoders are sampled, 
based on the error.

How different are your motors?
View the complete proportional.py code listing at 
github.com/martinohanlon/RobotPID.

Proportional control should be enough to stabilise 
your motors’ speed and keep them turning at about 
the correct speed, but when there is a large error or 
you want the speed to adjust quickly, you will get a 
large overshoot and your robot will react erratically, 
swinging left to right – this is where derivative 
control helps.

DERIVATIVE
Derivative control looks at how quickly or slowly the 
error is changing, creating a larger error if it’s changing 
quickly and a smaller one if slowly. This will help to 
smooth out the rate of change and prevent erratic 
changes in speed.

OTHER
PID USES

The input and 
outputs of a PID 
controller don’t 
have to be an 
encoder and 
a motor; the 
controller can 
be applied to any 
situation where 
something needs 
to be constantly 
monitored and 
adjusted. This 
could be:
 

  Using a 
magnetometer 
to make a 
robot move in a 
certain direction

  Keeping a 
camera on a 
powered mount 
pointing at the 
same place

  Making a robot 
follow a wall by 
measuring the 
distance to it with 
ultrasonic sensors

PID controllers are 
universal devices 
and the rules 
can be applied 
to solve many 
different problems.

Right 
Our encoders tick 
about 50 to 60 times 
per sample and 
motor 2 runs slightly 
faster than motor 1
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This is achieved by taking the previous error into 
account when calculating the adjustment and again 
multiplying by a constant (KD): 

adjustment = (error × KP) + (previous_error × KD)

Modify the program to implement derivative control…

1. Create a new constant (KD) for the derivative 
control. Again, this value will need to be changed to get 
the best results for your setup; a good starting value is 
half the value of KP:

KD = 0.01

2. Create two variables to hold the previous errors and 
set them to 0:

e1_prev_error = 0 
e2_prev_error = 0

3. Modify the code which calculate the speeds for 
motor 1 and 2 to taken into account the previous error:

    m1_speed += (e1_error * KP) + (e1_prev_error 
* KD) 
    m2_speed += (e2_error * KP) + (e1_prev_error 
* KD)

4. At the end of the loop, set the previous error 
variables to be that of the current error:

    sleep(SAMPLETIME) 
    e1_prev_error = e1_error 
    e2_prev_error = e2_error

5. Run your program. Again you will see the motor 
speed change in relation to error and over time, it 
should stabilise to a more consistent speed.

Proportional and derivative (PD) control should 
provide a good level of performance but may not 
provide consistency of speed over time – integral 
control can help to bring this stability.

INTEGRAL
Integral control helps to deliver steady state 
performance by adjusting for slowly changing errors. 
It does this by keeping a sum of all the previous errors 
and applying a constant (KI) to the adjustment:

adjustment = (error × KP) + (previous_error × KD) 
+ (sum_of_errors × KI)

Modify the program to implement integral control:

1. Create a constant for the integral control (KI); a 
good starting point is half the value of KD:

KI = 0.005

2. Create two variables to hold the sum of all previous 
errors and set them to 0:

e1_sum_error = 0 
e2_sum_error = 0

3. Modify the speed calculation to take into account 
the sum:

    m1_speed += (e1_error * KP) + (e1_prev_error * 
KD) + (e1_sum_error * KI) 
    m2_speed += (e2_error * KP) + (e1_prev_error * 
KD) + (e2_sum_error * KI)

4. At the end of the loop, increment the sum variables 
by the current error value:

    sleep(SAMPLETIME) 
    e1_sum_error += e1_error 
    e2_sum_error += e2_error

5. Run the program. You should see over time that the 
motor speeds start to stabilise. 

TUNING YOUR SETUP
To get PID control working for your setup, it will need to be tuned; this will involve modifying the 
constants KP, KD, and KI. There is no exact science to this and there will be a certain amount of 
trial, error, and intuition required before you find the right setup for your robot.

The following tips however should improve your tuning:
1.  Start by modifying the KP constant and get the performance as good as you can before 

moving onto KD and then finally KI.

2.  If the motor adjustments are too aggressive, swinging between too fast and too slow, reduce 
the constant.

3. If the motor speed isn’t changing fast enough, increase the constant.

4. Make any change in small increments; even a very small change can have a dramatic effect.

Once tuned, each motor should settle down to a speed which is close to the encoder target.

Left 
Thanks to a pair of 
controllers and PID, 
our robot now runs in 
a straight line

You may not have 
to implement 
proportional, integral 
and derivative (PID) 
control to get your 
robot to go straight: 
P or PD might be 
good enough.

QUICK TIP


