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ASAP and ALAP scheduling
• We’re now entering the final portion of the course

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The ASAP scheduling algorithm
– The ALAP scheduling algorithm and operation slack
– Introducing timing constraints into schedules
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ASAP Scheduling
• The simplest type of scheduling occurs when we 

wish to optimize the overall latency of the 
computation and do not care about the number of 
resources required

• This can be achieved by simply starting each 
operation in a CDFG as soon as its predecessors 
have completed

• This strategy gives rise to the name ASAP for “As 
Soon As Possible”
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ASAP Scheduling
• Let’s label each edge in the CDFG with the latency 

of the node producing that edge
• Then scheduling under ASAP is equivalent to 

finding the longest path between each operation 
and the source node

• Since a CDFG is a DAG, we can use the DAG 
longest path algorithm presented in Lecture 8

• Consider the original example from Lecture 1, and 
assume that multiplication takes two cycles, 
whereas addition and comparison take one cycle
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ASAP Scheduling

• Applying the DFG algorithm to finding the longest path 
between the start and end nodes leads to the scheduled 
start times on the right-hand diagram
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ALAP Scheduling
• The ASAP algorithm schedules each operation at the 

earliest opportunity. Given an overall latency constraint, it is
equally possible to schedule operations at the latest 
opportunity.

• This leads to the concept of As-Late-As-Possible (ALAP) 
scheduling.

• ALAP scheduling can be performed by seeking the longest 
path between each operation and the end or “sink” node.

• We will re-examine the example, under the same delay 
assumptions, with an overall latency constraint of 6 clock 
cycles.
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ALAP Scheduling

• The ALAP schedule start times can be derived by 
subtracting the longest path time from the desired overall 
latency constraint
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ALAP Scheduling

• Here are the ALAP start 
times. You can see that 
each operation starts at 
the latest opportunity 
possible to still meet 6 
cycles overall
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Mobility

• The highlighted nodes have equal ASAP and ALAP times. 
For all others there is a difference of at least once cycle.
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Mobility
• The difference between the ALAP and ASAP times 

for an operation is called the operation mobility or
slack.

• Mobility measures how free we are to move the 
operation into different time-slots.

• Operations with zero mobility are critical operations, 
and together form the critical path, which 
determines how fast our circuit will run.

• More sophisticated scheduling algorithms will take 
advantage of positive mobility to balance the 
resource requirements over time.
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Types of Timing Constraint
• As well as an overall latency constraint, other types 

of timing constraint are important
• Consider these examples [DeMicheli94]

– A circuit reads data from a bus, performs a computation, 
and writes the result back onto the bus. The bus interface 
specifies that the data must be written exactly three 
cycles after the read

– A circuit has two independent streams of operations, 
constrained to communicate simultaneously to external 
circuits by providing two pieces of data at two interfaces. 
The cycle in which the data are made available is 
irrelevant, although the simultaneity of the data is 
essential.
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Types of Timing Constraint
• We will consider two types of constraint

– a minimum timing constraint lij between 
operations vi and vj: S(vj) ≥ S(vi) + lij

– a maximum timing constraint uij between 
operations vi and vj : S(vj) ≤ S(vi) + uij

• These constraints are sufficient to model the 
situations on the previous slide, in addition to many 
others. Solutions for previous slide:
– set both min and max of 3 cycles between read and write
– set both min and max of 0 cycles between the two writes
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Modelling Timing Constraints
• How can we incorporate these timing constraints 

within our sequencing graph-based model, and 
how do they affect the schedule?

• From the sequencing graph G(V,E), we construct 
an edge-weighted constraint graph GC(V,EC), 
where E ⊂ EC:
– the edge weights for edges in E are the same as before 

(i.e. the delay of the node producing that edge)
– we add extra edges to model the timing constraints
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Modelling Timing Constraints
• Minimum timing constraints can simply be modelled 

by adding an extra edge (vi, vj) with weight lij
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Modelling Timing Constraints
• Maximum timing constraints can be modelled by 

adding an extra edge (vj, vi) with weight -uij
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later than five cycles after the 
multiplication starts
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Scheduling with timing constraints
• ASAP / ALAP scheduling can still be performed on 

constraint graphs through the longest path 
technique, BUT…
– the graph may no longer be a DAG (e.g. on the previous 

slide)
– we may need to use Liao-Wong to find the longest path
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Summary
• This lecture has covered

– The ASAP scheduling algorithm
– The ALAP scheduling algorithm and operation slack
– Introducing timing constraints into schedules

• Next lecture will look at list scheduling, an heuristic 
method to find a short schedule given constraints 
on the number of each type of resource available 
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Suggested Problem
• Consider again the differential equation example 

from Lecture 1, repeated again below.
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More Suggested Problems
• DeMicheli, Chapter 5, Problems 2 and 3 (note that 

DeMicheli refers to a combined min and max 
constraint between the source vertex and an 
operation as a “release time” constraint)
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List Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– resource constrained scheduling and latency constrained 

scheduling
– the resource-constrained list-scheduling algorithm
– the latency-constrained list-scheduling algorithm
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Resource Constrained Scheduling
• The following problem is given the name “resource 

constrained scheduling”:
– Given a library of resources, and a constraint on the 

maximum number of each type of resource to be used in 
the implementation, find a schedule of minimum latency

• This problem is NP-hard (proof in Lecture 6), so 
generally heuristics are used to attack the problem
– we will also be looking at a way to find an optimum 

solution next lecture
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Resource Constrained Scheduling
• Let R denote the set of resource types, 

– e.g. R = {add, mult, ALU}
• Let the bound on the number of each resource type 

r ∈ R be ar

• In list scheduling, we schedule operations by 
considering each clock-cycle in turn
– Ut,r is used to denote the set of operations of type r

whose predecessors have already completed by cycle t –
the candidate set

– Tt,r is used to denote the set of operations of type r
started, but not completed by cycle t
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Resource Constrained Algorithm
Algorithm RC_ListSchedule( G(V,E), R, a ) {
set t = 0;
repeat {

foreach r ∈ R {
determine Ut,r;
determine Tt,r;
select Y ⊆ Ut,r, s.t. |Y| + |Tt,r| ≤ ar;
set S(v) = t for all v ∈ Y;

}
set t = t+1;

} until all nodes scheduled
return( S );

}
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Resource Constrained Algorithm
• At each clock cycle, the candidate set represents 

those operations we could schedule
• From the candidate set, we select a subset Y, 

which we do schedule
• The constraint on selection of Y is that we can 

never have more than ar operations of type r
executing simultaneously

• Notice that as ar → ∞ for all r ∈ R, the list schedule 
approaches an ASAP schedule
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Resource Constrained Algorithm
• Notice that the algorithm is not fully defined, as we 

haven’t said how to pick Y
• The most common way to pick Y is to prefer to 

schedule the most urgent operations first
• Urgency is typically defined in terms of the 

minimum latency ALAP schedule time – the lower 
the ALAP time, the more urgent the operation is
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Resource Constrained Example
• Let’s re-visit our familiar differential equation 

example • Consider scheduling under 
the resource set                
R = {*, +/-, <}, where the 
delay of +/- and < is 1 
cycle, and the delay of * is 
2 cycles

• We will perform a list-
schedule with a*=2, a+/-=2, 
a<=1
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Resource Constrained Example
• t = 0

– U0,* = {a,b,c,d}, U0,+/- = {e}, U0,< = ∅
– T0,* = ∅, T0,+/- = ∅, T0,< = ∅
– For +/-, easy to select Y = {e}
– For *, we have a choice. ALAP times for a,b,c,d 

are 0,0,1,3, respectively (see Lecture 9). So 
most urgent are Y = {a,b}

– For <, there is nothing to schedule Y = ∅
– S(a) = 0, S(b) = 0, S(e) = 0
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Resource Constrained Example
• t = 1

– U1,* = {c,d}, U1,+/- = ∅, U1,< = {i}
– T1,* = {a,b}, T1,+/- = ∅, T1,< = ∅
– For +/-, Y = ∅
– For *, Y = ∅ (all resources busy)
– For <, Y = {i}
– S(i) = 1

1/22/2007 Lecture10              gac1 10

Resource Constrained Example
• t = 2

– U2,* = {c,d,f}, U2,+/- = ∅, U2,< = ∅
– T2,* = ∅, T2,+/- = ∅, T2,< = ∅
– For +/-, Y = ∅
– For *, ALAP times for c,d,f are 1,3,2 

respectively.Y = {c,f}
– For <, Y = ∅
– S(c) = 2, S(f) = 2
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Resource Constrained Example
• If we continue this process until the algorithm terminates

– we take once cycle longer than ASAP (but can use half 
the number of multipliers)
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Latency Constrained Scheduling
• The dual problem is “latency constrained 

scheduling”:
– Given a library of resources, and a constraint on the 

maximum overall latency of the schedule, find a schedule 
using the minimum number of resources of each type

• This problem is also NP-hard (the same proof 
holds), so again heuristics are used to attack the 
problem

• Let λ denote the desired maximum latency
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Latency Constrained Algorithm
Algorithm LC_ListSchedule( G(V,E), R, λ ) {

perform ALAP( G(V,E), λ );
set ar = 1 for all r ∈ R;
set t = 0;
repeat {
foreach r ∈ R {

determine Ut,r;
determine Tt,r;
determine slack sv = ALAPv – t for all v ∈ Utr;
set Y1 = {v ∈ V: sv = 0};
set ar = max( ar , |Y1| + |Ttr| );
select Y2 ⊆ Utr, s.t. |Y1 ∪ Y2| + |Ttr| ≤ ar;
set S(v) = t for all v ∈ Y1 ∪ Y2 ;

}
set t = t+1;

} until all nodes scheduled
return( S, a );

}
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Latency Constrained Algorithm
• This algorithm works by constantly refining the 

“maximum” number of resources it allows
– we start with one resource of each type
– this is changed if the desired latency is not achievable

• For each cycle, we calculate the slack of the 
candidate operations
– slack is the difference between the last cycle an 

operation could be scheduled in and the current cycle
– if the slack of an operation is zero, it must clearly be 

scheduled immediately, even if that means increasing the 
number of resources allowed
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Latency Constrained Algorithm
• Such “forced” scheduled nodes are placed in set Y1

• It may also be possible to schedule additional nodes, 
without increasing the resource requirements further. These 
are placed in Y2, and selected on the basis of urgency, as 
with the resource-constrained algorithm
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Latency Constrained Example
• As an example, we will again consider the 

differential equation CDFG
– The ASAP schedule gave a minimum schedule length of 

6 cycles. It had up to 4 “*”, 1 “+” and 1 “<” operating in 
parallel

– Let’s see whether latency constrained list scheduling can 
do better than that

• We will execute LC_ListSchedule( G(V,E), R, 6 )
• The ALAP times for this example have already 

been determined in Lecture 9, and are:
– a: 0, b: 0, c: 1, d: 3, e: 4, f: 2, g: 3, h: 5, i: 5, j: 4, k: 5
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Latency Constrained Example
• t = 0

– U0,* = {a,b,c,d}, U0,+/- = {e}, U0,< = ∅
– T0,* = ∅, T0,+/- = ∅, T0,< = ∅
– sa = 0, sb = 0, sc = 1, sd = 3, se = 4
– For *, Y1 = {a,b}; for +/-, Y1 = ∅; for <, Y1 = ∅
– a* = 2; others unchanged
– For *, Y2 = ∅; for +/-, Y2 = {e}; for <, Y2 = ∅
– S(a) = 0, S(b) = 0, S(e) = 0
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Latency Constrained Example
• t = 1

– U1,* = {c,d}, U1,+/- = ∅, U1,< = {i}
– T1,* = {a,b}, T1,+/- = ∅, T1,< = ∅
– sc = 0, sd = 2, si = 4
– For *, Y1 = {c}; for +/-, Y1 = ∅; for <, Y1 = ∅
– a* = 3; others unchanged
– For *, Y2 = ∅; for +/-, Y2 = ∅; for <, Y2 = {i}
– S(c) = 1, S(i) = 1
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Latency Constrained Example
• t = 2

– U2,* = {f,d}, U2,+/- = ∅, U2,< = ∅
– T2,* = {c}, T2,+/- = ∅, T2,< = ∅
– sf = 0, sd = 1
– For *, Y1 = {f}; for +/-, Y1 = ∅; for <, Y1 = ∅
– all resource constraints unchanged
– For *, Y2 = {d}; for +/-, Y2 = ∅; for <, Y2 = ∅
– S(f) = 2, S(d) = 2
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Latency Constrained Example
• If we continue this process until the algorithm terminates

– schedule has the same latency as ASAP, but requires 3 
rather than 4 multipliers
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Area / Speed Tradeoffs
• In general, if we allow more resources, the schedule may 

have a shorter latency
• Similarly, if we allow a longer latency, the schedule may 

require fewer resources
• This leads to the concept of an area / speed tradeoff

– one of a designers most important jobs is to explore this curve – and 
architectural synthesis tools can help

# mults (for constant # other resources)

overall
latency

can’t use fewer than one mult

can’t go faster than ASAP

achievable
designs
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Summary
• This lecture has covered

– resource constrained scheduling and latency constrained 
scheduling

– the resource-constrained list-scheduling algorithm
– the latency-constrained list-scheduling algorithm
– area / speed tradeoffs

• Next lecture will look at optimum scheduling 
methods, using Integer Linear Programming
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Suggested Problems
1. Re-visit the differential equation example. For two +/-

resources and one < resource, draw the complete Area / 
Speed tradeoff curves achieved by applying

• resource-constrained list-scheduling
• latency-constrained list-scheduling
Are they the same? Account for any differences (**)

2. Write a program to perform one of the list-scheduling 
algorithms and test it on some CDFGs of your own 
invention (***)
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Optimum Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Optimum scheduling: why ILP?
– Integer linear program model
– Example ILP and solution
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Optimum Scheduling
• Last lecture we looked at an heuristic scheduling 

technique: list scheduling
• We may also wish to know the optimum result for a 

given scheduling problem
– optimum results are only achievable for small problems, 

as resource-constrained scheduling is NP-hard
– if we design a heuristic, and it achieves near-optimal 

schedules for small problems, we are usually more 
confident it will do well for large problems

– optimum results form a “baseline” against which we can 
compare heuristics
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Why ILP?
• Integer Linear Programming is useful to achieve 

optimum results because
– it lets us formalize the problem
– it gives a structure to the problem: what is the objective 

function, what are the constraints, how many are there, 
what are their nature?

– we can use ILP solvers such as lp_solve
(ftp://ftp.es.ele.tue.nl/pub/lp_solve/) to solve 
problems once they are in ILP format
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Notation
• We will use the following notation, mainly carried 

over from previous lectures
– S(v): the scheduled start time of node v
– dv: the delay (latency) of node v
– ar: the maximum number of resources of type r
– T(v): the type of node v
– R: the set of resource types
– λ: the maximum overall latency
– ASAPv (ALAPv): the ASAP time (ALAP time) under 

overall latency λ
– xvt: binary decision variable (see next slide)
– cr: the cost of a resource of type r
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Binary Decision Variables
• We will use a trick often used in ILP formulations: to 

introduce binary decision variables
• We will use xvt (v ∈ V, t ∈ {ASAPv, ASAPv+1, …, 

ALAPv}, with xvt = 1 iff node v is scheduled to start 
at time t, i.e. xvt = 1 ⇔ S(v) = t

• These will allow us to formulate the resource 
constraints as linear functions of xvt

• Note that if we are doing resource-constrained 
scheduling, we may not know λ. Since it is an 
upper bound, we can use RC list scheduling to 
obtain it.
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Ensuring a Unique Start Time
• Our first constraint needs to be to ensure that each 

operation starts at only one time

• Because xvt are constrained to be binary variables, 
this means that exactly one time-index is true for 
each operation
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Specifying Data Dependencies
• Of course we can’t allow operations to start before 

their predecessors in the CDFG have completed

• Each edge in the CDFG defines one of these 
constraints

• Each summation represents the start time of the 
particular node (v on the LHS, v’ on the RHS)
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Specifying Resource Constraints
• No more than ar operations of type r can 

simultaneously execute

• The first summation is over all nodes of type r
• The second summation is over a time “window”

covering all start cycles t’ for which the operation 
would still be executing by cycle t
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Resource-Constrained 
Objective Function

• Under these constraints, the resource-constrained 
scheduling problem can be solved by minimizing 
the overall latency (we fix ar)

• Here, vz represents the “end” or “sink” node in the 
CDFG
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Latency-Constrained 
Objective Function

• Under the same constraints, the latency-
constrained scheduling problem can be solved by 
minimizing the cost of the resources required (we 
fix λ)
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Example ILP
• We will build an ILP for the differential equation solver as an 

example
• We will formulate the latency-constrained problem for λ = 6, 

the minimum possible latency
• To refresh your memories, here are the ASAP and ALAP 

times for λ = 6 from Lecture 9
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Example ILP
• First, lets examine what variables we have:

• Operations with large mobility give rise to a large 
number of variables
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Example ILP
• The first constraints are unique-start-time 

constraints:
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Example ILP
• The next constraints are dependency constraints:
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Example ILP
• Dependency constraints continued…
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Example ILP
• Resource constraints:
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Example ILP
• More resource constraints:

• Objective function:
– let’s assume the cost of a mult is “2”, and that of an adder 

and comparator is “1”:

*32232

*22211

*101000

*0000

:3*,

:2*,
:1*,
:0*,

axxxxxtr
axxxxxtr

axxxxxxtr
axxxxtr

ggfdd

gfddc

ddccba

dcba

≤++++==

≤++++==
≤+++++==

≤+++==

<−+ ++ aaa /*2:min
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Example ILP
• This (rather long!) example contains 29 binary 

decision variables and 3 resource allocation 
variables (total = 32) and 44 constraints

• For even this small example, the ILP model is quite 
sizable 
– ILP is only really practical for solving small problems
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Summary
• This lecture has covered

– Optimum scheduling: why ILP?
– Integer linear program model
– Example ILP and solution

• Next lecture will move off the subject of 
scheduling, and start to consider algorithms 
for resource sharing
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Suggested Problems
• Download a copy of lp_solve from the website 

given at the start of the lecture, and solve the ILP 
example
– what is the minimum possible cost?
– how many adders, multipliers, and comparators does it 

use?
– how does that compare with a latency-constrained list-

schedule?
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Affine Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Scheduling nested loops: the affine approach
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Nested Loop Programs
• So far, we have only looked at scheduling “straight-line”

code
– Loops can be trivially scheduled by repeating the 

schedule of the loop body.
– However, this is not always the most efficient way.

• We shall now consider nested loop programs:
for i1 = l1 to u1

for i2 = l2(i1) to u2(i1)
...
for in = ln(i1,...,in-1) to un(i1,...,in-1)

S1: first statement
...
Sk: kth statement

end for
...

end for
end for
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Affine Nested Loop Programs
• To simplify notation, we will discuss scheduling statements, 

rather than operations
– Equivalent if each statement contains a single operation.

• Our scheduling procedures so far would allocate a start time 
S(u) to each statement u in the inner loop
– loops will run sequentially.

• We can do better if we make a (practical) restriction on the 
functions lj and uj
– Let us denote i = (i1, i2, ..., in)T.
– We will assume lj and uj are affine, i.e.

lj ( i ) = ljTi + lj0, 
uj ( i ) = uj

Ti + uj
0.
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The Unrolling “Solution”
• Before going further, it let us consider an easy 

alternative:
– “unroll” all the loops, i.e. convert to straight-line code,
– Use one of our previous scheduling algorithms.

• Problem:
– Size of unrolled code exponential in n.
– As a result, optimal scheduling infeasible, heuristic 

scheduling overwhelmed, massive FSM.
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Affine Schedules
• The alternative is to define a scheduling function 

S(i,v): the start time of statement v in iteration i.
• If we impose a particular functional form on S(i,v), 

the problem becomes tractable
– Ensure S(i,v) is “affine-by-statement”:

S(i,v) = tvTi + tv0.
• The domain of the function S is V×IS, where IS

denotes the iteration space.
• For an affine loop nest, IS is the set of integral 

points inside Ai ≤ b, known as a convex polytope.

1/22/2007 Lecture11              gac1 6

Iteration Space
• This is because the lower and upper iteration bounds 

impose linear constraints on i:
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Iteration Space
• Geometrically:

– each constraint (a row in A and b) cuts n-dimensional 
space with an (n – 1)-dimensional hyperplane.

• Graphical example:

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

i1

i 2

for i1 = 0 to 5
for i2 = 0 to 5 – i1

...
end for

end for
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Dependences
• As before, the key issue in scheduling is to respect 

data dependences (‘flow’ dependences).
– We shall now consider inter-iteration data dependences.
– Typically, these are carried by array accesses.

– In this code, iteration (i1,i2) must execute after iteration 
(i1-1,j) due to dependence carried by access to array “s”.

– In the unrolled CDFG, this would be a normal edge.

for i1 = 1 to 100
for i2 = 0 to 100

s[ i1 ][ i2 ] = s[ i1 – 1 ][ i2 ] + c[ i1 ][ i2 ]*x[ i2 ]
end 

end
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Constant dependences
• Each of the dependences imposes a linear 

constraint on tv
– For our example, there is only one statement, so we 

shall drop the “v” subscript, and denote the delay of this 
statement by d. Then:

–  In this example, there is nothing in the constraint 
(1 0)t ≥ d that depends on i or j; this is a constant 
dependence.

dtd
i

i
t

i
i

t TT ≥⇒+⎟⎟
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Constant dependences
• Constant dependences make life easier

– One linear constraint per statement
– Any feasible solution to the corresponding linear set of 

constraints is a valid schedule!
– We could define an appropriate objective function, 

depending on what we’re trying to optimize – overall 
latency, etc.

– More complex techniques exist to deal with non-constant 
(but still affine!) dependences

• P. Feautrier, “Some Efficient Solutions to the Affine Scheduling 
Problem I: One-Dimensional Time”, Int. J. Parallel Programming
21(5), 1992, pp. 313-347.
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Example Objective
• We have our constraints: what about an objective 

function?
– Instance i of statement v completes by tvTi + tv0 + d(v).
– This linear function of i will be maximized at one of the 

vertices.
– For each vertex i, introduce a constraint 

λ ≥ tvTi + tv0 + d(v).
– Min latency objective is then just min: λ.
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Limitations
• Affine scheduling sub-optimal, e.g. the code below, where n 

is some constant known at synthesis time.

• The code is completely sequential. The best (non-affine) 
schedule is S(i,j) = i(i +1)/2 + j, giving overall latency 
n(n + 3)/2. The best affine schedule S(i,j) = ni + j, which is 
much worse (approx twice as slow), at n(n +1).

• Can use multi-dimensional “time” polynomial schedules.

for i = 0 to n
for j = 0 to i

s = s + a(i,j)
end for 

end for



1/22/2007 Lecture11              gac1 13

Summary
• This lecture has covered

– Affine nested loop programs
– Affine schedules
– Constant and affine dependences
– The vertex method
– Limitations of affine schedules.

• Next lecture will move off the subject of 
scheduling, and start to consider algorithms 
for resource sharing.
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Suggested Problems
• Consider the code below.
• Determine the flow dependences, and construct a 

linear program to schedule this code.
– Assume each statement takes a single cycle

for i = 1 to 10
for j = i to 2*i

x[ i ][ j ] = x[ i - 1][ j ] * x[ i ][ j – 1]
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Resource Sharing
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Non-hierarchical CDFGs
– Hierarchical CDFGs
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Introduction
• We will consider some approaches for sharing 

resources between operations
• Non-hierarchical and hierarchical CDFGs will be 

considered separately
– problem has different complexity

• Remember that hierarchical CDFGs can be used to 
represent the following (Lecture 1)
– conditionals
– loops
– function calls
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Resource Conflict Graph
• The one fundamental restriction on sharing 

resources:
– two operations executing simultaneously cannot be 

executed on the same resource
• This leads to the concept of “resource conflict”
• Two operations are in resource conflict if they 

overlap in execution time
• A resource conflict graph uses the same node set 

as the CDFG, but uses a set of undirected edges 
such that:  (Lecture 2)
– two operations are joined by an edge iff they are in 

resource conflict
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Non-Hierarchical CDFGs
• For non-hierarchical CDFGs (i.e. those with just 

one level of hierarchy), such a conflict graph is 
simple

+ *

* +

#

a:0 b:0

c:1 d:2

#

+

+

a

d

non-hierarchical CDFG

adder 
conflict graph

*

*

b

c

multiplier
conflict graph
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Graph Structure
• Conflict graphs for non-hierarchical CDFGs are 

interval graphs
• Recall from Lecture 5 that an interval graph is one 

whose vertices can be put in one-to-one 
correspondence with a set of intervals, such that 
two vertices are connected by an edge iff the 
corresponding intervals intersect

• Also recall from Lecture 5 that such graphs are 
colourable easily in polynomial time using the left-
edge algorithm
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Solution via Left-Edge
• We can therefore find an optimum binding using left-edge, reproduced 

below from Lecture 5
– use the scheduled start and end times as the left and right “edges”, 

respectively
Left_Edge( G(V,E) )
begin

sort nodes in ascending order of left edge – store in L
c := 1;
while( not all vertices have been coloured ) {
r := 0;
while( there is a vertex in L with ls > r ) {
vs := first node in L with ls > r;
r: = rs;
label vs with colour c
L := L \ {vs}; }

c := c + 1; }
end
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Left-Edge: Example
• Taking the previous example:

• So use one adder to do both a and d, but different 
multipliers to do b and c

• Formally, Y(a) = (+,1); Y(b) = (*,1); Y(c)=(*,2); Y(d)=(+,1)

a

d

+

+

a

d

b

c

*

*

b

c

c=1 c=1 c=2
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Hierarchical CDFGs
• Consider a simple hierarchical CDFG with function 

calls, performing the same function as the previous 
example

F F

#

a:0 b:0

#

#

+

*

c:0

d:1

#

*

+

#

#

e:0

f:2
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Hierarchical CDFGs
• How do we perform resource sharing?

– a naïve approach would be to perform resource sharing 
on each level of the hierarchy in turn

– for our example, this would lead to one multiplier and one 
adder for each function: one more adder than we needed 
for the non-hierarchical version

• We should try to share resources across the levels 
of hierarchy
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Conditionals
• Conditionals help us share resources, as the two 

branches (“if” and “else”) are never needed 
simultaneously

B

#

<

#

#

*

#

#

*

#

a = b < c;
if (a) then

d = b * b;
else

d = c * c;

a:0

b:1c:1 d:1

• Operations c and d are not in resource conflict, 
although they have the same type and “overlap” in 
time
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Multiple Function Calls
• Multiple calls to the same function complicate 

matters, as operations can have several execution 
times

F

#

a:0

#

*

+

#

#

c:0,3

d:2,5
Fb:3

fun(p) {
return p*p + 5;

}

a = fun(x);
b = fun(a);
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Graph Properties
• Conditionals and multiple function calls change the 

structure of the conflict graph
– it no longer must be an interval graph
– the left-edge algorithm is therefore no longer applicable

• We need an heuristic approach to colouring the 
graph
– one such algorithm is given in Lecture 5
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Colouring Heuristic
• Here is the colouring heuristic from Lecture 5:

• We will apply it to an example with conditionals and 
multiple function calls

Colour_Graph( G(V,E) )
begin
foreach v ∈ V {
c = 1;
while ∃(v,v’) ∈ E : v’ has colour c

c = c + 1;
label v with colour c }

end
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Hierarchical Example
• Here is a more complex scheduled CDFG

a = fun(x);
b = fun(a);
if (y) then

c = b * b;
else

c = 2 * b;
d = 3*b;

F

#

a:0

#

*

+

#

#

c:0,3

d:2,5
Fb:3

B

*

#

#

*

#

# e:6

g:6f:6

*h:6

fun(p) {
t1 = p*p;
return t1 + 5;

}
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Hierarchical Example

• Let’s colour the multiplier nodes in the order:         
c, f, g, h
– c gets colour 1; f gets colour 1; g gets colour 1; h gets 

colour 2 
– we need two mults and an add

c f

g
d

multiplier conflict graph adder conflict graph

• Remember f and g don’t conflict (if / else)

h
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Example Datapath

t1

a
b
c
d

(multiplier,1) (adder,1)

xx 2

from
control
unit

5

(multiplier,2)

3
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Summary
• We have investigated resource sharing for 

both
– Non-hierarchical CDFGs
– Hierarchical CDFGs

• Next lecture we will look at register sharing
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Suggested Problems
• Perform a resource binding for the list-scheduled 

differential equation example from Lecture 10 and 
draw the completed datapath (*)

• Design a controller for this datapath (*)
• Discuss resource binding for conditionals within 

conditionals (****)
• Discuss a possible approach to resource binding 

for loops (****)
• De Micheli, Problems 6.11, No. 1 (conflict graphs 

only) (*)
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Register Sharing
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The register sharing problem
– Variable lifetime calculation
– Register conflict graphs
– Non-hierarchical register sharing
– Hierarchical register sharing: the loop problem
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Register Sharing
• We have discussed sharing of arithmetic resources

– registers also consume silicon area
• Registers are required for each intermediate result 

passed across a clock-cycle boundary
• So far, we have used a distinct register for each 

intermediate result
– but we could share registers if results are not needed at 

the same time
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Lifetime Analysis
• Consider the code and scheduled CDFG below

– it has inputs x and y, and output f

z1 = 2*x;
z2 = 3*y;
z3 = z1*z2;
z4 = x*x;
z5 = z3 – 2;
z6 = z2*z4;
f = z5 – z6;

*

x

*
y

*z1 z2
*

x

*

z4

-z3

-z5 z6

f
#

#

0 0

2

4

1

3

5

z2
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Lifetime Analysis
• Let’s analyse the lifetime for which each result is required

– z1 is produced during cycle 1 and consumed during cycle 2
– z2 is produced during cycle 1 and consumed both                 

during cycle 2 and cycle 3
– z3 is produced during cycle 3 and consumed during cycle 4
– z4 is produced during cycle 2 and consumed during cycle 3
– z5 is produced during cycle 4 and consumed during cycle 5
– z6 is produced during cycle 4 and consumed during cycle 5
– f is produced during cycle 5 and consumed at some unknown time

• A register must be allocated to each result from the period 
AFTER production, to the period DURING the last 
consumption
– this is the variable “lifetime”
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Register Conflict Graph
• Two results cannot share a register if their lifetimes 

overlap
– we can thus create a register conflict graph just like the 

resource conflict graph used in the previous lecture

z1 z2

z4

z5 z6

z3

cycle 0
cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

z1 z2

z3
z4

z5 z6
fcycle 6 f
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Register Conflict Graph
• As with resource sharing, for the non-hierarchical 

case the register conflict graph is an interval graph
– optimum solution through the left-edge algorithm

• Our example conflict graph can be coloured with 
only two colours
– only two registers are required
– z1, z3, z4, z6 and f share a register
– z2 and z5 share a register

z1

z4

z6

z3

z2

z5

f
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Example Datapath

• Note the multiplexers on the register inputs
– sharing resources leads to MUXs on resource inputs
– sharing registers leads to MUXs on register inputs

• So what would the datapath be for that design?

z1/z3/z4/z6/f

z2/z5 from
control
unitto MUXs

and resources

z1
z3
z4
z6

z2
z5

(from 
resources)

from
control unit

f
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Register sharing for loops
• As with resource sharing, things get more 

complicated for hierarchical CDFGs
– we will not consider the general problem
– but we will examine the effect of loops to give you a 

glimpse
• Consider the following sum-of-squares code and 

scheduled CDFG

total = 0;
for n=0 to 9

z1 = x[n]*x[n];
total = total + z1;

end

L

#

#

#

*

+

#

0
3n

3n+2

0
3n

30
3n+3

total

x total

total

x[n]

z1
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Register sharing for loops
• The result “total” is required to keep its value 

BETWEEN loop iterations
– it is produced at cycles 3,6,9,…30 (excluding the 

initialization) and consumed at cycles 2,5,8,…,29, and at 
an unknown time after cycle 30

cycle 3n+0
cycle 3n+1
cycle 3n+2 z1

total

total totalz1
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Register sharing for loops
• Because of the “circular arc” wrap around effect 

with some variables, the conflict graphs for 
hierarchical CDFGs are not always interval graphs

• Colouring such general graphs is NP-hard, 
requiring the use of our colouring heuristic (or 
similar)
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Summary
• We have investigated register sharing:

– Variable lifetime calculation
– Register conflict graphs
– Non-hierarchical register sharing
– Hierarchical register sharing: the loop problem

• Next lecture we will look at the module 
selection problem
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Suggested Problems
• Perform a resource binding, and thus complete the partial 

example datapath given this lecture (*)
• To what extent can the registers be shared in the resource-

constrained list-scheduled example of Lecture 10? (*)
• How important is register sharing? (think about it…) (***)
• Consider what problems, if any, you may have extending 

the framework discussed in this lecture to (****)
– function calls (with one call per function)
– function calls (with unlimited calls per function)
– conditionals
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Module Selection
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The module selection problem
– Module selection / scheduling / binding interaction
– An ILP formulation
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Module Selection
• So far, we have considered only one resource type 

capable of performing each operation, e.g.
– an adder/subtractor performs additions or subtractions
– a multiplier performs multiplications

• We could have different possibilities, e.g.
– either an adder/subtractor or an ALU could perform an 

addition
– either a ripple-carry adder or a carry-lookahead adder 

could perform an addition
• Module selection is the task of selecting an 

appropriate type of resource to perform each 
operations
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Interactions
• Ideally, we would like to perform module selection 

before scheduling
– different resource types for a given operation may have 

different latencies
– we need to know the latency (or at least an upper bound) 

before we can schedule
• However, ideally we would like to combine module 

selection and resource binding
– we don’t know which operations can share resources 

until we know the resource type of each operation
– delaying module selection until binding will help us find a 

low-area implementation
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Interactions
• For example, consider the code and CDFG below

z1 = x*2;
f1 = z1 < 3;
f2 = x+2;

#

+ *

<

#

a b

c

• Assume we have the following library:
• Adder: 1 area unit / latency 1 cycle, Comparator: 1 area 

unit / latency 1 cycle, ALU: 1.5 area units / latency 2 
cycles, Multiplier: 2 area units / latency 2 cycles 
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Interactions
• We may wish to implement

– a in an adder, c in a comparator
– a and c in ALUs

• The second option is only useful if the operations can share 
a single ALU, otherwise it is a waste of area and latency

• We don’t know if they can share a single ALU until after 
scheduling
– we should perform module selection after scheduling

• But we don’t know the latencies until module selection
– we should perform module selection before scheduling
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Interactions
• Since we perform scheduling before binding, there 

is clearly a contradiction
– we want to do module selection early in the design flow
– we want to do module selection late in the design flow

• One solution is to perform scheduling, module 
selection, and resource binding concurrently as a 
single problem
– advantage: leads to high-quality solutions
– disadvantage: leads to a complex problem to solve
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ILP Formulation
• It is relatively straightforward to extend our ILP 

scheduling approach to consider the combined 
problem

• Rather than using variables xvt to indicate the 
scheduling of operation v at time t
– we assume we know an upper bound ar on the number of 

resources required of type r ∈ R
– use xvtir to indicate the scheduling of operation v at time t

on instance i ∈ {1,…,ar} of resource type r ∈ R
– one variable xvtir exists for all v ∈ V, t ∈ { ASAPv, …, 

ALAPv }, r ∈ T(v), i ∈ {1,…, ar}
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ILP Formulation
– T(v) is the type set of operation v. For our previous 

example,  T(*) = *; T(<) = {ALU,<}; T(+) = {ALU, +/-}
• The module selection problem is thus choosing a 

single member of T(v) for each v ∈ V
– We will combine module selection, scheduling, and 

binding, to achieve an optimum result
• In addition to xvtir, we will use a binary variable bir

for each instance of each resource type
– bir = 1 ⇔ instance i of resource type r is used by at least 

one operation
– as before, we will use cr to denote the cost of a resource 

of type r
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ILP Formulation
• Unlike the ILP scheduling in Lecture 11, a CDFG 

node does not have a fixed delay
– it depends on which resource type implements the 

operation
• For this reason, we associate delays with resource 

types: type r has delay dr

• There is at least one resource type with minimum 
delay dmin v

• The ASAP and ALAP scheduling is performed by 
assuming each operation has its minimum delay
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ILP Formulation
• We will also introduce one more symbol which will 

make the formulation easier to follow:
• W represents the set of all times that any operation 

could possibly start at: 

U
Vv

vv ALAPASAPW
∈

= },...,{
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Objective Function
• We are now in a position to formulate the “minimum 

cost” objective function:

∑ ∑
∈ =Rr

a

i
irr

r

bc
1

  :minimize
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Binding Constraints
• Each operation must be mapped to a single 

instance of a single resource type, operating at a 
single time:

1,
)( 1

min

=∈∀ ∑ ∑ ∑
∈ =

+−

=vTr

a

i

ddALAP

ASAPt
vtir

r vrv

v

xVv

• Note that an operation with ALAP time ALAPv
cannot execute later than ALAPv – dv + dmin v when 
performed on a resource with delay dr
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Resource Constraints
• No one instance of any resource type can execute 

more than one operation at a time
– indeed, if the instance is unused, no operations may 

execute on that instance

ir
vTrVv ddALAPASAPdttt

irvt

r

bx
aiRrWt

vrvvr

≤

∈∀∈∀∈∀

∑ ∑
∈∈ +−∩−+∈)(: },...,{}1,...,{'

'
min

},,...,1{,,

• As before, the 2nd summation is over a “time window” during 
which operations could overlap
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Dependencies
• As previously, we need to encode each 

dependency in the CDFG

∑ ∑ ∑∑ ∑ ∑
∈ =

+−

=∈ =

+−

=

⋅+≥⋅

∈∀

)'( 1
'

)( 1

'min'

'

min

)(

,),'(

vTr

a

i

ddALAP

ASAPt
tirvr

vTr

a

i

ddALAP

ASAPt
vtir

r vrv

v

r vrv

v

xdtxt

Evv

• The main difference with the previous formulation is 
simply bringing the execution delay into the RHS 
summations, as it depends on the resource type
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ILP Example
• To illustrate the method, we will complete an ILP for 

the simple example earlier this lecture
– let a* = 1, a+ = 1, a< = 1, aALU = 2
– (we can’t use more resource than operations of that type)
– note that aALU is overkill, as we mentioned earlier
– let d* = 2, d+ = 1, d< = 1, dALU = 2
– let c* = 2, c+ = 1, c< = 1, cALU = 1.5
– let λ = 4 (not a tight constraint)
– then ASAPa = 0, ASAPb = 0, 

ASAPc = 2, ALAPa = 3,  ALAPb = 1, 
ALAPc = 3

#

+ *

<

#

a b

c
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ILP Example
• So W = {0,1,2,3}∪{0,1} ∪{2,3} = {0,1,2,3}

• Our objective function is then:

)(5.1112 ,2,1,1,1,*1 ALUALU bbbbb ++++ <+    
  :minimize
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ILP Example
• Binding constraints:

1
:

,2,2,,2,1,,2,0,,1,2,,1,1,

,1,0,,1,3,,1,2,,1,1,,1,0,

=++++

+++++= ++++

ALUaALUaALUaALUaALUa

ALUaaaaa

xxxxx
xxxxxav

1: ,*1,1,,*1,0, =+= bb xxbv

1: ,2,2,,1,2,,1,3,,1,2, =+++= << ALUcALUccc xxxxcv
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ILP Example
• Resource constraints:

++

++

++

++

≤=+==

≤=+==

≤=+==

≤=+==

,1,1,3,

,1,1,2,

,1,1,1,

,1,1,0,

:1,,3
:1,,2
:1,,1
:1,,0

bxirt
bxirt

bxirt
bxirt

a

a

a

a
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ILP Example
• More resource constraints:

<<

<<

≤==<=

≤==<=

≤===

≤+===

,1,1,3,

,1,1,2,

,*1,*1,1,

,*1,*1,1,,*1,0,

:1,,3
:1,,2
:1*,,1
:1*,,0

bxirt
bxirt
bxirt

bxxirt

c

c

b

bb
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ILP Example
• More resource constraints:

ALUALUcALUa

ALUALUcALUa

ALUALUcALUaALUa

ALUALUcALUaALUa

ALUALUaALUa

ALUALUaALUa

bxxiALUrt
bxxiALUrt

bxxxiALUrt
bxxxiALUrt

bxxiALUrt
bxxiALUrt

,2,2,2,,2,2,

,1,1,2,,1,2,

,2,2,2,,2,2,,2,1,

,1,1,2,,1,2,,1,1,

,2,2,1,,2,0,

,1,1,1,,1,0,

:2,,2
:1,,2
:2,,1
:1,,1
:2,,0
:1,,0

≤+===

≤+===

≤++===

≤++===

≤+===

≤+===
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ILP Example

• Dependency constraint:

,*1,1,,*1,0,,2,2,,1,2,

,1,3,,1,2,

)21()20(22
32:,'

bbALUcALUc

cc

xxxx
xxcvbv

+++≥+

++== <<
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Summary
• This lecture has covered

– The module selection problem
– Module selection / scheduling / binding 

interaction
– An ILP formulation

• Next lecture we will examine the retiming 
problem.
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Suggested Problems
• Download a copy of lp_solve from the website 

given at the start of Lecture 11, and solve the ILP 
example
– what is the minimum possible cost? (*)
– how many adders, multipliers, comparators and ALUs

does it use? (*)
– how many variables and constraints are there? (*)
– how do you think the number of variables and constraints 

vary with the size of the CDFG? (***)
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Retiming
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Retiming: motivation and definitions
– Delay-weighted DFGs
– Retiming for clock period minimization
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Motivation
• Our concentration so far has been on synthesising “straight-

line code” or single loop iterations
• We have also briefly generalized this using CDFGs
• Often, algorithms will contain loop-carried dependencies, 

e.g. this IIR filter:
a = 0; b = 0; c = 0; 
while( true ) {

read x;
y = x + a;
a’ = 0.1*b + 0.2*c;
b’ = y;
c’ = b;
a = a’; b = b’; c = c’;
write y;

}

An IIR filter with transfer 
function 

32 2.01.01
1)( −− −−

=
zz

zH
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Motivation
• There is an alternative way of writing this code:

d = 0; e = 0; f = 0; g = 0;
while( true ) {

read x;
y = x + d + g;
d’ = 0.1*e;
e’ = y;
f’ = e;
g’ = 0.2*f;
d = d’; e = e’; f = f’; g = g’;
write y;

}

(We will soon see how you 
can prove the equivalence)
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Motivation
• Comparing the CDFGs of the two inner loops, we can see 

that they may have different minimum latency.
#

+ *

+

#

x

b

*
c

#

*

+

+

#

e

x*

fr

w

a r

w

d,g

min latency = 
max{Tr+Tw,T*}+T+

min latency = 
max{T*,2T++Tw,Tr+T++Tw}

potential speedup
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Retiming an operator
• This type of code transformation is called retiming, 

and derives from the following simple observation:

combinational
logic

combinational
logic

… has identical behaviour to …

• We can move a 
register through an 
operation without 
affecting the “outside 
world” view of 
behaviour
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The initialization problem
• We must, however, give some thought to the 

initialization of the system
• For example,

… has identical behaviour to …
initially 0

initially 1

• This is fine for forward 
retiming, i.e. moving the 
register from an input to 
an output.

• Backward retiming 
requires there to be an 
appropriate set of inputs 
that generate the desired 
output

1/22/2007 Lecture15              gac1 7

The delay-weighted DFG
• To be able to formally reason about retiming issues, we 

need to represent the entire loop as a form of DFG, 
including information on loop-carried dependencies.

• We will do this by an edge-weighted DFG, where each edge 
weight represents the number of iterations delay on that 
edge. We will call this a delay-weighted DFG.

• Note that when we have a loop-carried dependency, the 
delay-weighted DFG will contain a cycle.
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Delay-Weighted DFG

• This is our original example and its delay-weighted DFG
• Noting that the only output of the lower adder has weight 1, 

we can retime backwards across this adder, resulting in…

a = 0; b = 0; c = 0; 
while( true ) {

read x;
y = x + a;
a’ = 0.1*b + 0.2*c;
b’ = y;
c’ = b;
a = a’; b = b’; c = c’;
write y;

}

*

+

+

*

r w
0 0

21
0

1

0

a’ a
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Delay-Weighted DFG

• … which corresponds to our modified example

*

+

+

*

r w
0 0

21
1

0

1

d = 0; e = 0; f = 0; g = 0;
while( true ) {

read x;
y = x + d + g;
d’ = 0.1*e;
e’ = y;
f’ = e;
g’ = 0.2*f;
d = d’; e = e’; f = f’; g = g’;
write y;

}
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Approaching the problem
• We can associate the nodes V with a retiming value 

r: V → Z which denotes the number of clock cycles 
that node has been moved “forwards in time”

• If we denote by w: E → Z the original weight, and 
wr: E → Z the retimed weight, then
for all (u,v) ∈ E, wr(u,v) = w(u,v) + r(v) – r(u)

• A feasible retiming is one for which for all
(u,v) ∈ E, wr(u,v) ≥ 0 (since we can’t have a 
negative number of registers)
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Retiming for Clock-Period Min
• There are several reasons why we may wish to retime, 

including for speed and for minimization of registers.
• We will address retiming for clock-period minimization, i.e. 

clock frequency maximization.
• The maximum clock frequency is determined by the worst-

case combinational delay between any two registers, or 
from an input to a register, or from an register to an output.

• Let us denote by d(v) the combinational delay of node v, 
and we will assume all nodes are combinational.
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Retiming problem formulation
• We must therefore have the notion of a 

combinational path, i.e. a path that does not pass 
through any registers.

– wr(u,v) = 0 ⇒ combinational path.
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An ILP Solution
• We can modify the LP for 

longest-path given in 
Lecture 8 to:

• Minimize L s.t.

E(u,vNvuwudss ruv ∈++≥ ) allfor  ),()(

VvLvdsv ∈≤+  all for )(

E(u,vurvrvuwvuwr ∈≥−+= )0)()(),(),(  all for 

(2)

(1)

(3)

VvZvr ∈∈  allfor  )( (4)
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An ILP Solution
• Here N is a “large-enough” negative number.
• L corresponds to the longest combinational path, a 

fact guaranteed by (2), which ensures it is at least 
as large as the largest (sv + delay of node v).

• (1) is simply an extension of Bellman’s equations. If 
wr(u,v) = 0, it is a direct implementation of 
Bellman’s. wr(u,v) > 0, (1) is satisfied no matter 
what (due to N being large, and wr being integer 
(4)).

• Finally, (3) combines the definition of wr(u,v) with 
the feasibility constraint.
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Example

• The retimed example also corresponds to a feasible 
solution, with sv1 = 0, sv2 = 1, sv3 = 2, sv4 = 0, sv5 = 0, sv6 = 0, 
L = 2: an improvement!

*

+

+

*

r w
0 0

21
0

1

0

v1 v2 v3

v4
v5

v6

• Let’s say d(v2) = d(v4) = 1, d(v1) = 
d(v3) = 0, d(v5) = d(v6) = 2

• If the retiming left the graph 
unchanged, then r(v1)=r(v2)=r(v3)= 
r(v4)=r(v5)=r(v6)=0

• It should be easily verifiable that (1)-
(4) are satisfied in this case, with sv1
= 0, sv2 = 0, sv3 = 1, sv4 = 2, sv5 = 0, 
sv6 = 0, L = 3
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Summary
• This lecture has covered

– Retiming: motivation and definitions
– Delay-weighted DFGs
– Retiming for clock-period minimization

• The next lecture will investigate the 
floorplanning problem.
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Suggested Problems
• Is the retiming shown in the example optimal?
• The edge-weighted DFG of a two-stage lattice filter 

is shown below: retime the DFG to improve the 
clock rate given that the delay of a multiplier is 2ns, 
the delay of an adder is 1ns, and the delay of an 
I/O node is 0ns.

+

*

*

+

r

w

+

*

*

+
2

2

2

2

(unlabelled edges have 
zero weight)
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Floorplanning
• The final portion of the course covers

– Scheduling algorithms
– Resource sharing algorithms
– Module selection
– Retiming
– Floorplanning
– Function approximation
– Perspectives for the future

• This lecture covers
– The floorplanning problem
– Slicing and non-slicing floorplans and representations
– Heuristic and ILP solutions
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Motivation
• In recent years, we have moved to deep sub-

micron design.
• Wiring delays have started to compete with (and 

sometimes overtake) logic delay.
– it is important to be able to estimate wiring delay early in 

the design process.
• We need an early idea of geometrical layout on 

silicon
– a floorplan.

• Floorplanning becomes part of architectural 
synthesis.
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Slicing Floorplans
• Floorplans are typically categorised into

– slicing floorplans or non-slicing floorplans

• Slicing floorplan
– obtainable by repeated bisection of rectangular cells
– simplifies representation and optimization

A slicing floorplan A non-slicing floorplan

1 2 3
4 5

6

7

1

2

3
4

5
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Slicing Tree Representation
• A slicing tree is a binary tree representation of a 

slicing floorplan
– a leaf is a resource to be floorplanned
– other nodes indicate how to compose their children: 

vertically, or horizontally.

1 2 3
4 5

6

7

V

7 H

H

1 2

H

3 V

6 H

4 5
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Skewed Slicing Trees
• Unfortunately, slicing trees are not unique 

representations of the floorplan.

1 2 3
4 5

6

7

V

7 H

H

1 2

H

3 V

6 H

4 5

V

7 H

H

1 2

3

V

6 H

4 5

H

Both slicing trees are valid representations
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Skewed Slicing Trees
• A skewed slicing tree has the following property

– no node and its right-child have the same type
• Every slicing floorplan has a unique skewed slicing 

tree.
• How to represent the trees in a floorplanning

algorithm?
– we can represent it as a string, called a Polish 

expression.
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Polish Expressions
V

7 H

H

1 2

3

V

6 H

4 5

H

• A skewed slicing tree corresponds to a Polish 
expression where
– no two consecutive operators (H/V) are of the same type.

• Polish expression for:
Polish(Y)+Polish(Z)+“X”

• Polish expression for leaf is 
leaf value.

• For tree on the left:
“712H3H645HVHV”

X

Y Z
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Floorplan Optimization
• We have a compact and unique representation of a 

slicing floorplan. How to optimize for smallest area?
• A common approach:

– start with a random floorplan
– improve it based on certain well-defined “moves”

• What moves1?
– Swap two adjacent operands (leaf nodes) in the Polish 

expression.
– Take a chain of consecutive operators, e.g. “HVHV”, and 

complement it, e.g. “VHVH”.
– Swap an adjacent operator and operand. (But make sure still a 

skewed tree!)
1 Moves from Prof. Hai Zhou
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Floorplan Optimization

12H3H

1 2

3
1

2

3

213VH

12V3H1

2

3

1
2

3 21V3H
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Area Computation
• How to tell whether a move improves area?

– Height( XYH ) = max( Height( X ), Height( Y ) )
– Width( XYH ) = Width( X ) + Width( Y )
– Height( XYV ) = Height( X ) + Height( Y )
– Width( XYV ) = max( Width( X ), Width( Y ) )

21V3H1

2

3
Height(21V3H) = max( Height(21V), Height(3) )

= max( Height(2) + Height(1), Height(3) )

Width(21V3H) = Width(21V) + Width(3)
= max( Width(2), Width(1) ) + Width(3)
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Simulated Annealing
• In our example, not all moves improved area

– not good enough to just “pick the best move” each time
• Simulated annealing is often used

– pick a move at random.
– if it improves area, do it.
– if it doesn’t improve area, maybe do it.

• Probability of selecting a move that does not 
improve area
– reduces with area penalty for move
– decreases (for a fixed area penalty) with iteration number
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An ILP Approach
• We can also take an ILP approach to the 

floorplanning problem
– guaranteed optimal solutions
– slicing and non-slicing floorplans within a single 

framework
– poor execution-time scaling
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An ILP Approach
• Resources cannot overlap

xi

xj

yiyj

wj

wihj

hi

xi ≥ xj + wj (1)

xj ≥ xi + wi (2)

yi ≥ yj + hj (3)

yj ≥ yi + hi (4)

• We need to ensure that at 
least one of (1)-(4) holds
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An ILP Approach
• Although each constraint is linear, “at least one of”

causes us a problem.
• A solution: all constraints below hold.

– P is a big enough positive number, e.g. max chip 
dimension. For all (i,j) ∈ R2, (1) to (4) must hold.

xi + Pδij + Pηij ≥ xj + wj (1)

xj + P(1 - δij) + Pηij ≥ xi + wi (2)

yi + Pδij + P(1 - ηij) ≥ yj + hj (3)

yj + P(1 - δij) + P(1 - ηij) ≥ yi + hi (4)

δij, ηij ∈ B
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Good Floorplanning
• Some floorplans are better than others

– place resources that communicate close to each other.

• Given a maximum wire-length Wij for each pair 
(i,j) ∈ R2 of connected resources, (5)-(9) must hold.

(9)                      

(8)  

(7)     

(6) 

(5)    

v
ij

h
ijij

v
ijjjii

v
ijjjii

h
ijjjii

h
ijjjii

WWW

Whyhy

Whyhy

Wwxwx

Wwxwx

+=

≤++−−

≤−−+

≤++−−

≤−−+

5.05.0

5.05.0

5.05.0

5.05.0

xi

xj

yi
yj

wj

wihj

hi
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Good Floorplanning
• Constraints (5) & (6) ensure that horizontal 

wirelength is no more than Wij
h.

– (7) and (8) perform a similar function for vertical 
wirelength.

• Constraint (9) expresses total wirelength in terms of 
Manhattan distance.

appropriate
for most
design rules

linear
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Design Area
• We must ensure that the design fits in chip 

dimensions X by Y.
– For all resources i ∈ R, (10) and (11) must hold.

• If the chip aspect ratio is given, Y = kX (12).
– Objective is then min: X

• If aspect ratio is not given, we have min: XY
– problem: nonlinear objective

(11)         
(10)        

Yhy
Xwx

ii

ii

≤+
≤+
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Linearization
• Two standard approaches

– iterate: solve “min: X” with Y fixed, many times 
for different values of Y.

– approximate: 
XY ≈ X’ Y’ + ( X - X’ )Y’ + ( Y - Y’ ) X’ for 
X ≈ X’ and Y ≈ Y’.

– (or some combination of the two).

• More recently, convex (nonlinear) optimization 
techniques have started to appear.
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ILP Approaches
• The approach has a (very) large execution time: 

O(n2) integer variables.
– techniques have been proposed to break down into sub-

problems1.
– sub-problems can be stitched into suboptimal solutions.

1Sutanthavibul, Schragowitz, and Rosen, IEEE Trans CAD 10(6), 1991.
Smith, Constantinides, and Cheung, Proc. Field-Programmable Logic, 2005 (in 
the context of FPGA design).
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Summary
• This lecture has introduced floorplanning

– motivation: deep-submicron era
– slicing vs non-slicing floorplans
– Polish expressions
– optimizing moves
– an ILP approach

• The next lecture will look at function approximation.
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Suggested Problems
• Draw the floorplan represented by the following slicing tree:

• Convert this tree into a skewed slicing tree.
• Write the Polish expression for the skewed tree.
• Identify one of the three moves proposed in this lecture that could be 

applied to obtain an optimal area floorplan for the given resource 
dimensions.
– Resource 1: Height = 2, Width = 2
– Resource 2: Height = 2, Width = 1
– Resource 3: Height = 1, Width = 1
– Resource 4: Height = 1, Width = 1

V
V

1H
2

4 3
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Beyond Mults and Adds
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture covers
– Polynomial approximations
– Evaluation methods
– Approximation methods
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Function Evaluation
• Throughout much of the course, we have used 

multiplication and addition as the key operations
• There are typically pre-designed library blocks for 

adder and multiplier resources
• Not necessarily the case for more complex 

functions: sin(x), cos(x), ex, etc.

• In this lecture we investigate how to evaluate these 
functions
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Polynomial Approximations
• Let us return to our main operations: addition, and 

multiplication
• What different functions of a variable x can be 

produced through addition and multiplication 
alone?
– polynomials in x
– f(x) = c0 + c1x + c2x2 + … + cnxn

• This suggests a solution to our problem: find a 
polynomial “close enough” to the function, and 
then use mults and adds to evaluate it
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A Simple Evaluation Scheme
• Let’s use a 2nd order polynomial as an example

– f(x) = c0 + c1x + c2x2

– how can we evaluate this polynomial?

F

#

*

*

x

x2

x

* c1x

c2x2
+

+
c1x + c2x2

c0 + c1x + c2x2
#
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Horner’s Scheme
• Horner’s scheme is a method to reduce the number 

of operations involved
– f(x) = c0 + c1x + c2x2 + … + cnxn

– re-write: f(x) = (…((cnx + cn-1)x + cn-2)x + … + c1)x + c0

• For our example

F

#

#

x

*

+

*
c2x + c1

c1x + c2x2+

c2x

c0 + c1x + c2x2

x
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Finding Polynomial Coefficients
• For any function f(x), we want to find the set of 

polynomial coefficients so that the polynomial 
function g(x) is “close enough” to f(x)

• What is “close enough”? Could be:
1. to within a worst case error ε, i.e. maxx |f(x) – g(x)| < ε
2. in the least-squares sense, i.e.

– w(x) is a “weight” function, which allows us to place 
greater emphasis on errors some ranges of x

ε<−∫
x

dxxgxfxw 2))()()((
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Least-Squares Approximations
• We can construct

– where φi(x) is a known polynomial of degree i
• If we choose a set of orthogonal polynomials φi(x), 

i.e.

• Then it is easy to calculate ai

∑
=

=
n

i
ii xaxg

0
)()( φ

0)()(, =≠∀ ∫ dxxxji
x

ji φφ

1/22/2007 Lecture16              gac1 8

Least-Squares Approximations
• If we define the inner product

• Then the coefficients minimizing the least-squares 
error are

dxxgxfgf
x
∫>=< )()(,

><
><

=
ii

i
i

fa
φφ
φ

,
,
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Least-Squares Approximations
• Proof: We are trying to minimize
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Least-Squares Approximations
• Proof (cont’d): Differentiate w.r.t. ai and set equal to zero

• This ease of derivation makes least-squares solutions 
popular
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Legendre Polynomials
• There are many sets of orthogonal polynomials with 

different properties
• Two common ones are the Legendre and the 

Chebyshev-I polynomials, both defined over [-1,1]
• Legendre polynomials have a weight w(x) = 1 and 

can be defined by

i
i

i

ii x
dx
d

i
x )1(

!2
1)( 2 −=φ
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Chebyshev Polynomials
• Chebyshev-I polynomials have weighting function 

w(x) = (1-x2)-1/2 and can be defined by:

• Your choice of orthogonal polynomials should 
depend on which parts of the function domain you 
require to be highly accurate

∏
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Summary
• This lecture has covered

– Polynomial approximations
– The Horner’s scheme evaluation method
– Least squares approximation
– Legendre and Chebyshev-I orthogonal 

polynomials

• In the next lecture, we will discuss floorplanning.

• The work by my ex-Ph.D. student Dr. Nalin Sidahao was used extensively to prepare this 
lecture. 

1/22/2007 Lecture16              gac1 14

Suggested Problems
• What is the least-squares error when fitting the 

function f(x) = sin(π(x+1)/4) over [-1,1] using a 
polynomial of 3rd order constructed as a weighted 
sum of Legendre polynomials?

• Derive a formula for the number of multipliers 
required using Horner’s scheme for polynomial 
evaluation

• The critical path of the Horner’s scheme evaluation 
can be reduced, possibly at the cost of more 
operations, by different approaches. Can you 
derive one such scheme?
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Perspectives I
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture (part one of two) covers
– Abstract design representations
– Word-length optimization
– Number representations

1/22/2007 Lecture17              gac1 2

Levels of Abstraction in Design
• Most of our examples have used a C-like 

imperative language as the original design 
specification

Full-Custom VLSI Design

Gate-Level Design

Register-Transfer Level VHDL

Behavioural VHDL

?

increasing
abstraction

increasing
productivity

increasingly
technology-
specific
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Why [not?] C
• One of the main candidates for “?” on the previous 

slides is C
• Advantage: There are lots of C programmers, and 

even more C code
• Disadvantage: C was designed for a single 

processor
– no concept of parallelism, so we would need to 

automatically detect all parallelism
– sometimes C is not a natural representation – we have 

had to sequentialize an algorithm, only to have to re-
parallelize it
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Why [not?] C
• One compromise is to extend C

– Celoxica (http://www.celoxica.com) has a product for 
synthesis from “C with extensions”

– You can add explicit parallelism with the “par” keyword
• Some aspects of C are particularly troublesome for 

automatic analysis and efficient hardware 
generation
– Synthesis of code containing pointers has only recently 

been addressed (c. 2000) 
(http://akebono.stanford.edu/users/nanni/research/sys)

– For this reason, pointerless Java has been sometimes 
suggested as an alternative
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Simulink
• I believe a more promising approach is to 

target specific problem domains
– Simulink is widely used in Control and DSP, so 

use it as a specification format in these domains
– We have developed a tool for synthesis from Simulink

(http://cas.ee.ic.ac.uk/~gac1/) 

– Recently technology manufacturers are getting 
interested in this approach 
(http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generator)
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Example in Simulink

• Already in DFG form!
• Modelling loops, etc. is 

not as natural
• Ideal for data-intensive 

applications
– DSP
– Communications

© Xilinx
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Matlab
• Probably the widest used tool for DSP algorithm 

development
• Has complex control structures (while, etc) like C

– so comparatively hard to map efficiently
– also has implicit parallelism in matrix statements, e.g.     

A = B + C for matrices: each element can be done in 
parallel – in C, we would have to write as a loop

• A Matlab-based synthesis tool is in development at 
Northwestern University 
(http://www.ece.northwestern.edu/cpdc/Match/Match.html)
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Mathematical Specifications
• Possibly the “ultimate” future for synthesis of DSP 

systems
• DSP algorithms are typically defined as a set of 

equations
– a designer will then map this to a Matlab or Simulink

description
• We could aim higher – for direct synthesis from the 

equations themselves
– plenty of scope for research here!
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Word-Length Optimization
• Simulink, Matlab, some C and mathematical 

specifications share something not present in 
hardware languages
– in numerical computations, often everything is a high-

precision floating point number
– for hardware, we want to trim the precision down the the

minimum (high speed, low area, low power)
• Word-length optimization problem:

– Choose a suitable word-length for each internal variable, 
in order to minimize area (or power, or maximize speed) 
subject to acceptable arithmetic error
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Word-Length Optimization
• This problem is one of my original research areas 
• Our research has produced two tools (Synoptix, Right-Size) 

– synthesizes a low-area implementation by selecting the 
internal word-lengths appropriately

– input format is Simulink
– output format is structural VHDL
– http://cas.ee.ic.ac.uk/~gac1
– LTI systems, differentiable nonlinear systems

• Actively researching the use of word-length optimization for 
power consumption minimization
– EPSRC funded research, Dr. Altaf Abdul Gaffar and Mr. 

Jonathan Clarke.
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Logarithmic Representations
• Using standard two’s complement representation is 

not always the most efficient
• In an algorithm with many additions but few 

divisions and multiplies, standard representation 
may suffice

• In an algorithm with few additions but many 
multiplies and divisions, a logarithmic 
representation may be better
– log( a/b ) = log(a) – log(b); log(ab) = log(a) + log(b)

• We may still have to do conversion in and out of 
log-form
– overheads could outweigh advantages
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Residue Number Systems
• Residue number systems also may be a possible 

route to fast circuitry
• Choose n relatively prime numbers m1, m2, …, mn

• Represent x as a list (x mod m1, x mod m2, …, x
mod mn)
– we can represent up to m1m2…mn numbers uniquely like 

this
– we can perform arithmetic on the list of numbers, e.g. for 

n=2, m1=3, m2=5: 4 = (1,4), 3 = (0,3), 4*3 = (1*0,4*3) = 
(0,12 mod 5) = (0, 2)
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Residue Number Systems
• Key point: We can do arithmetic on each of the list 

elements in parallel
– if max( ⎡log2 m1⎤, ⎡log2 m2 ⎤, …, ⎡log2 mn ⎤ ) <     

⎡ log2(m1 m2…mn) ⎤, we can get speed advantages
– the delay of an arithmetic component depends on the 

worst-case delay of each list element
– for our example, max( ⎡log2 3⎤, ⎡log2 5 ⎤ ) = 3 < 4 = ⎡log2

15⎤
– however the area of the design may increase
– for our example, we need a 2-bit and a 3-bit adder rather 

than a single 4-bit adder (roughly 25% larger)
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Number System Selection
• Ideally, a synthesis tool would select automatically which 

portions of the circuit are best implemented using
– standard bit-parallel representation
– bit-serial representation (or something between)
– logarithmic representation
– residue representation
– fixed point
– floating point (IEEE standard – or something else?)

• Such a tool would have to take into account the overhead of 
converting from one format to another

• This is an open research topic
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Summary
• This lecture (part one of two) has covered

– Abstract design representations
– Word-length optimization
– Number representations

• Next lecture will continue to examine some 
future directions for architectural synthesis
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Perspectives II
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture (part two of two) covers
– Function approximation
– Mathematical transformations
– Hardware / Software partitioning
– Memory synthesis
– Synthesis of Reconfigurable Architectures
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Function Approximation
• During this lecture course, we have often used 

multiplication and addition as exemplary operations
• Sometimes we are interested in incorporating more 

complex functions like sin(x) or ecos(x)

• We could simply extend our current approach, if we 
have a library of designs for such functions
– however there are many different methods for 

implementing a given function in hardware
– we could use a ROM as a lookup-table
– we could express the function using a polynomial 

approximation, and then implement it using adds and 
mults
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Function Approximation
– we could express the function using a rational 

approximation, and then implement it using adds, mults, 
and a divide

• Simple lookup table approach:

• Choose m and n to trade-off area/error/speed

ROM
n bits m bits

Size ∝ m2n

Speed ∝ 1/n
Error ∝ 2-m +  a complex 
dependence on nx sqrt(x)
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Function Approximation
• Polynomial approximation:

– Over [1,2], sqrt(x) ≈ 0.44 + 0.63x + 0.07x2

= 0.44 + x( 0.63 + 0.07x )

*
0.07 x

+

0.63

*
x

+

0.44

• Many tradeoffs are possible
• how many bits used to represent 

coefficient?
• how many bits to represent internal 

variables?
• how many polynomial terms?
• what type of approximation? 

• worst-case, or average case?
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Function Approximation
• Different solutions will have different area, 

arithmetic error, power, and speed characteristics
• The challenge is to decide automatically when to 

use which type of function approximation
– we have started to investigate this issue (Dr Nalin

Sidahao and Mr Gareth Morris)
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Mathematical Transformations
• There are certain mathematical transformations 

which may be used to obtain different speed / area 
tradeoffs 

• For a simple example, ((a+b)+c)+d = (a+b) + (c+d)
– addition is associative

• Comparing the LHS and RHS as DFGs,
+

+
+

+

+ +

+

Can be scheduled 
in 4 time units
using a single 
adder

Can be 
scheduled in 
2 time units, 
if we use two 
adders
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Mathematical Transformations
• Another typical transformation is “strength 

reduction”
– try to replace high-area / low-speed / high-power 

operators by a combination of low-area / high-speed / 
low-power operators

• For example 127x → 128x – x = (x<<7) – x
– “<<7” represents a left-shift by 7 bits
– shifting in hardware is cheap: just wires
– subtraction is cheap
– multiplication is expensive
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Mathematical Transformations
• The challenge is to decide, given constraints on 

area, error, power and speed for the overall design, 
which transformations to apply where

• There may be hidden pitfalls
– just because a transformation is valid for real numbers 

doesn’t make it valid for binary representations
– in an 8-bit 2’s complement representation, numbers can 

range from –128 to 127. (120+120)-150 may flag an 
overflow, but (120-150)+120 won’t
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Hardware / Software Partitioning
• Large scale designs of embedded systems typically 

have a hardware portion and a software portion
• The designer must decide which tasks are best 

done in software, and which in hardware
– software can be slow, power-hungry, and cheap
– hardware can be fast, power-efficient, and expensive
– hardware can only be significantly faster if the application 

can be parallelized
• Could this task be done automatically?

– Our research group has been addressing this problem for 
configurable hardware based on Field-Programmable 
Gate Arrays (FPGAs) [Dr. Theerayod Wiangtong]

1/22/2007 Lecture18              gac1 10

Memory Synthesis
• We have concentrated in the course on the area, 

speed, and power associated with arithmetic units
• In many applications, memory accesses consume 

significant power and slow down the application
• Memory itself can also consume a significant 

proportion of silicon area
• Recently, our research group has been 

investigating ways to use memory more efficiently
– what variables should be stored where in memory in 

order to minimize power consumption? (Dr. Sambuddhi
Hettiaratchi)

– How to design customised parallel caches which match 
the characteristics of the algorithm (Mr. Su-Shin Ang)
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Synthesis of Reconfigurable Architectures
• We have covered techniques to synthesise application 

specific architectures.
– this architecture could then be implemented on an ASIC (expensive 

for small volume!)
– or on an FPGA (expensive for large volume)

• FPGAs are cost effective for small volumes
– able to spread fixed costs over a large range of designs
– but how to decide the architecture of the FPGA itself?

• Fixed-function blocks: multipliers, RAMs
– limited flexibility, high performance, small footprint

• What proportion of multipliers, RAMs, fine-grain logic, and 
other components are appropriate?
– Synthesise an FPGA architecture suitable for synthesising AS 

architectures!
– New and exciting research field. (Mr. Alastair Smith).
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Summary
• This lecture (part two of two) has covered

– Function approximation
– Mathematical transformations
– Hardware / Software partitioning
– Memory synthesis
– Reconfigurable architectures

• Next lecture will summarize the entire 
course, and allow you to focus on topics for 
revision


