
1/22/2007 Lecture9 gac1 1

ASAP and ALAP scheduling
• We’re now entering the final portion of the course

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The ASAP scheduling algorithm
– The ALAP scheduling algorithm and operation slack
– Introducing timing constraints into schedules

1/22/2007 Lecture9 gac1 2

ASAP Scheduling
• The simplest type of scheduling occurs when we

wish to optimize the overall latency of the
computation and do not care about the number of
resources required

• This can be achieved by simply starting each
operation in a CDFG as soon as its predecessors
have completed

• This strategy gives rise to the name ASAP for “As
Soon As Possible”

1/22/2007 Lecture9 gac1 3

ASAP Scheduling
• Let’s label each edge in the CDFG with the latency

of the node producing that edge
• Then scheduling under ASAP is equivalent to

finding the longest path between each operation
and the source node

• Since a CDFG is a DAG, we can use the DAG
longest path algorithm presented in Lecture 8

• Consider the original example from Lecture 1, and
assume that multiplication takes two cycles,
whereas addition and comparison take one cycle

1/22/2007 Lecture9 gac1 4

ASAP Scheduling

• Applying the DFG algorithm to finding the longest path
between the start and end nodes leads to the scheduled
start times on the right-hand diagram

+* * * *

* *

-

-

+ <

#

#

0
0 0

0

2 2 2 2 1

1122

1

1

+* * * *

* *

-

-

+ <

#

#

0

0 0 0 0 0

2 2 2 1

4

5
6

Edge weighted CDFG Scheduled start times

1/22/2007 Lecture9 gac1 5

ALAP Scheduling
• The ASAP algorithm schedules each operation at the

earliest opportunity. Given an overall latency constraint, it is
equally possible to schedule operations at the latest
opportunity.

• This leads to the concept of As-Late-As-Possible (ALAP)
scheduling.

• ALAP scheduling can be performed by seeking the longest
path between each operation and the end or “sink” node.

• We will re-examine the example, under the same delay
assumptions, with an overall latency constraint of 6 clock
cycles.

1/22/2007 Lecture9 gac1 6

ALAP Scheduling

• The ALAP schedule start times can be derived by
subtracting the longest path time from the desired overall
latency constraint

+* * * *

* *

-

-

+ <

#

#

0
0 0

0

2 2 2 2 1

1122

1

1

+* * * *

* *

-

-

+ <

#

#

6

6 6 5 3 2

4 3 1 1

2

1
0

Edge-weighted CDFG Longest paths to sink node

1/22/2007 Lecture9 gac1 7

ALAP Scheduling

• Here are the ALAP start
times. You can see that
each operation starts at
the latest opportunity
possible to still meet 6
cycles overall

+* * * *

* *

-

-

+ <

#

#

0

0 0 1 4

2 3 5 5

4

5
6

3

1/22/2007 Lecture9 gac1 8

Mobility

• The highlighted nodes have equal ASAP and ALAP times.
For all others there is a difference of at least once cycle.

+* * * *

* *

-

-

+ <

#

#

0

0 0 1 4

2 3 5 5

4

5
6

+* * * *

* *

-

-

+ <

#

#

0

0 0 0 0 0

2 2 2 1

4

5
6

• Let’s compare the ASAP and ALAP schedules:

3

1/22/2007 Lecture9 gac1 9

Mobility
• The difference between the ALAP and ASAP times

for an operation is called the operation mobility or
slack.

• Mobility measures how free we are to move the
operation into different time-slots.

• Operations with zero mobility are critical operations,
and together form the critical path, which
determines how fast our circuit will run.

• More sophisticated scheduling algorithms will take
advantage of positive mobility to balance the
resource requirements over time.

1/22/2007 Lecture9 gac1 10

Types of Timing Constraint
• As well as an overall latency constraint, other types

of timing constraint are important
• Consider these examples [DeMicheli94]

– A circuit reads data from a bus, performs a computation,
and writes the result back onto the bus. The bus interface
specifies that the data must be written exactly three
cycles after the read

– A circuit has two independent streams of operations,
constrained to communicate simultaneously to external
circuits by providing two pieces of data at two interfaces.
The cycle in which the data are made available is
irrelevant, although the simultaneity of the data is
essential.

1/22/2007 Lecture9 gac1 11

Types of Timing Constraint
• We will consider two types of constraint

– a minimum timing constraint lij between
operations vi and vj: S(vj) ≥ S(vi) + lij

– a maximum timing constraint uij between
operations vi and vj : S(vj) ≤ S(vi) + uij

• These constraints are sufficient to model the
situations on the previous slide, in addition to many
others. Solutions for previous slide:
– set both min and max of 3 cycles between read and write
– set both min and max of 0 cycles between the two writes

1/22/2007 Lecture9 gac1 12

Modelling Timing Constraints
• How can we incorporate these timing constraints

within our sequencing graph-based model, and
how do they affect the schedule?

• From the sequencing graph G(V,E), we construct
an edge-weighted constraint graph GC(V,EC),
where E ⊂ EC:
– the edge weights for edges in E are the same as before

(i.e. the delay of the node producing that edge)
– we add extra edges to model the timing constraints

1/22/2007 Lecture9 gac1 13

Modelling Timing Constraints
• Minimum timing constraints can simply be modelled

by adding an extra edge (vi, vj) with weight lij

0
0 0

0

2 2 2 2 1

1122

1

1

+* * * *

* *

-

-

+ <

#

#5

• By adding the curved edge
with weight 5, the
subtraction operation
cannot start for at least 5
cycles after the
multiplication starts

1/22/2007 Lecture9 gac1 14

Modelling Timing Constraints
• Maximum timing constraints can be modelled by

adding an extra edge (vj, vi) with weight -uij

0
0 0

0

2 2 2 2 1

1122

1

1

+* * * *

* *

-

-

+ <

#

#-5

• Now the multiplication cannot
occur before -5 cycles after
the subtraction starts

• S(mult) ≥ S(sub) – 5, i.e.
S(sub) ≤ S(mult) + 5

• The subtraction cannot occur
later than five cycles after the
multiplication starts

1/22/2007 Lecture9 gac1 15

Scheduling with timing constraints
• ASAP / ALAP scheduling can still be performed on

constraint graphs through the longest path
technique, BUT…
– the graph may no longer be a DAG (e.g. on the previous

slide)
– we may need to use Liao-Wong to find the longest path

1/22/2007 Lecture9 gac1 16

Summary
• This lecture has covered

– The ASAP scheduling algorithm
– The ALAP scheduling algorithm and operation slack
– Introducing timing constraints into schedules

• Next lecture will look at list scheduling, an heuristic
method to find a short schedule given constraints
on the number of each type of resource available

1/22/2007 Lecture9 gac1 17

Suggested Problem
• Consider again the differential equation example

from Lecture 1, repeated again below.

0
0 0

0

2 2 2 2 1

1122

1

1

+* * * *

* *

-

-

+ <

#

#

• It is required that the
subtraction operation
marked (α) begin no later
than 3 cycles after the
multiplication operation
marked (β)

• Compare the ALAP
schedules with and without
this constraint

β

α

1/22/2007 Lecture9 gac1 18

More Suggested Problems
• DeMicheli, Chapter 5, Problems 2 and 3 (note that

DeMicheli refers to a combined min and max
constraint between the source vertex and an
operation as a “release time” constraint)

1/22/2007 Lecture10 gac1 1

List Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– resource constrained scheduling and latency constrained

scheduling
– the resource-constrained list-scheduling algorithm
– the latency-constrained list-scheduling algorithm

1/22/2007 Lecture10 gac1 2

Resource Constrained Scheduling
• The following problem is given the name “resource

constrained scheduling”:
– Given a library of resources, and a constraint on the

maximum number of each type of resource to be used in
the implementation, find a schedule of minimum latency

• This problem is NP-hard (proof in Lecture 6), so
generally heuristics are used to attack the problem
– we will also be looking at a way to find an optimum

solution next lecture

1/22/2007 Lecture10 gac1 3

Resource Constrained Scheduling
• Let R denote the set of resource types,

– e.g. R = {add, mult, ALU}
• Let the bound on the number of each resource type

r ∈ R be ar

• In list scheduling, we schedule operations by
considering each clock-cycle in turn
– Ut,r is used to denote the set of operations of type r

whose predecessors have already completed by cycle t –
the candidate set

– Tt,r is used to denote the set of operations of type r
started, but not completed by cycle t

1/22/2007 Lecture10 gac1 4

Resource Constrained Algorithm
Algorithm RC_ListSchedule(G(V,E), R, a) {
set t = 0;
repeat {

foreach r ∈ R {
determine Ut,r;
determine Tt,r;
select Y ⊆ Ut,r, s.t. |Y| + |Tt,r| ≤ ar;
set S(v) = t for all v ∈ Y;

}
set t = t+1;

} until all nodes scheduled
return(S);

}

1/22/2007 Lecture10 gac1 5

Resource Constrained Algorithm
• At each clock cycle, the candidate set represents

those operations we could schedule
• From the candidate set, we select a subset Y,

which we do schedule
• The constraint on selection of Y is that we can

never have more than ar operations of type r
executing simultaneously

• Notice that as ar → ∞ for all r ∈ R, the list schedule
approaches an ASAP schedule

1/22/2007 Lecture10 gac1 6

Resource Constrained Algorithm
• Notice that the algorithm is not fully defined, as we

haven’t said how to pick Y
• The most common way to pick Y is to prefer to

schedule the most urgent operations first
• Urgency is typically defined in terms of the

minimum latency ALAP schedule time – the lower
the ALAP time, the more urgent the operation is

1/22/2007 Lecture10 gac1 7

Resource Constrained Example
• Let’s re-visit our familiar differential equation

example • Consider scheduling under
the resource set
R = {*, +/-, <}, where the
delay of +/- and < is 1
cycle, and the delay of * is
2 cycles

• We will perform a list-
schedule with a*=2, a+/-=2,
a<=1

+* * * *

* *

-

-

+ <

#

#

a b c d e

f g h i

j
k

1/22/2007 Lecture10 gac1 8

Resource Constrained Example
• t = 0

– U0,* = {a,b,c,d}, U0,+/- = {e}, U0,< = ∅
– T0,* = ∅, T0,+/- = ∅, T0,< = ∅
– For +/-, easy to select Y = {e}
– For *, we have a choice. ALAP times for a,b,c,d

are 0,0,1,3, respectively (see Lecture 9). So
most urgent are Y = {a,b}

– For <, there is nothing to schedule Y = ∅
– S(a) = 0, S(b) = 0, S(e) = 0

1/22/2007 Lecture10 gac1 9

Resource Constrained Example
• t = 1

– U1,* = {c,d}, U1,+/- = ∅, U1,< = {i}
– T1,* = {a,b}, T1,+/- = ∅, T1,< = ∅
– For +/-, Y = ∅
– For *, Y = ∅ (all resources busy)
– For <, Y = {i}
– S(i) = 1

1/22/2007 Lecture10 gac1 10

Resource Constrained Example
• t = 2

– U2,* = {c,d,f}, U2,+/- = ∅, U2,< = ∅
– T2,* = ∅, T2,+/- = ∅, T2,< = ∅
– For +/-, Y = ∅
– For *, ALAP times for c,d,f are 1,3,2

respectively.Y = {c,f}
– For <, Y = ∅
– S(c) = 2, S(f) = 2

1/22/2007 Lecture10 gac1 11

Resource Constrained Example
• If we continue this process until the algorithm terminates

– we take once cycle longer than ASAP (but can use half
the number of multipliers)

+* * * *

* *

-

-

+ <

#

#

0 0 2 4 0

2 4 6 1

4
6

+* * * *

* *

-

-

+ <

#

#

0

0 0 0 0 0

2 2 2 1

4

5
6

0

7

List-scheduled times ASAP times from Lect 9
1/22/2007 Lecture10 gac1 12

Latency Constrained Scheduling
• The dual problem is “latency constrained

scheduling”:
– Given a library of resources, and a constraint on the

maximum overall latency of the schedule, find a schedule
using the minimum number of resources of each type

• This problem is also NP-hard (the same proof
holds), so again heuristics are used to attack the
problem

• Let λ denote the desired maximum latency

1/22/2007 Lecture10 gac1 13

Latency Constrained Algorithm
Algorithm LC_ListSchedule(G(V,E), R, λ) {

perform ALAP(G(V,E), λ);
set ar = 1 for all r ∈ R;
set t = 0;
repeat {
foreach r ∈ R {

determine Ut,r;
determine Tt,r;
determine slack sv = ALAPv – t for all v ∈ Utr;
set Y1 = {v ∈ V: sv = 0};
set ar = max(ar , |Y1| + |Ttr|);
select Y2 ⊆ Utr, s.t. |Y1 ∪ Y2| + |Ttr| ≤ ar;
set S(v) = t for all v ∈ Y1 ∪ Y2 ;

}
set t = t+1;

} until all nodes scheduled
return(S, a);

}
1/22/2007 Lecture10 gac1 14

Latency Constrained Algorithm
• This algorithm works by constantly refining the

“maximum” number of resources it allows
– we start with one resource of each type
– this is changed if the desired latency is not achievable

• For each cycle, we calculate the slack of the
candidate operations
– slack is the difference between the last cycle an

operation could be scheduled in and the current cycle
– if the slack of an operation is zero, it must clearly be

scheduled immediately, even if that means increasing the
number of resources allowed

1/22/2007 Lecture10 gac1 15

Latency Constrained Algorithm
• Such “forced” scheduled nodes are placed in set Y1

• It may also be possible to schedule additional nodes,
without increasing the resource requirements further. These
are placed in Y2, and selected on the basis of urgency, as
with the resource-constrained algorithm

1/22/2007 Lecture10 gac1 16

Latency Constrained Example
• As an example, we will again consider the

differential equation CDFG
– The ASAP schedule gave a minimum schedule length of

6 cycles. It had up to 4 “*”, 1 “+” and 1 “<” operating in
parallel

– Let’s see whether latency constrained list scheduling can
do better than that

• We will execute LC_ListSchedule(G(V,E), R, 6)
• The ALAP times for this example have already

been determined in Lecture 9, and are:
– a: 0, b: 0, c: 1, d: 3, e: 4, f: 2, g: 3, h: 5, i: 5, j: 4, k: 5

1/22/2007 Lecture10 gac1 17

Latency Constrained Example
• t = 0

– U0,* = {a,b,c,d}, U0,+/- = {e}, U0,< = ∅
– T0,* = ∅, T0,+/- = ∅, T0,< = ∅
– sa = 0, sb = 0, sc = 1, sd = 3, se = 4
– For *, Y1 = {a,b}; for +/-, Y1 = ∅; for <, Y1 = ∅
– a* = 2; others unchanged
– For *, Y2 = ∅; for +/-, Y2 = {e}; for <, Y2 = ∅
– S(a) = 0, S(b) = 0, S(e) = 0

1/22/2007 Lecture10 gac1 18

Latency Constrained Example
• t = 1

– U1,* = {c,d}, U1,+/- = ∅, U1,< = {i}
– T1,* = {a,b}, T1,+/- = ∅, T1,< = ∅
– sc = 0, sd = 2, si = 4
– For *, Y1 = {c}; for +/-, Y1 = ∅; for <, Y1 = ∅
– a* = 3; others unchanged
– For *, Y2 = ∅; for +/-, Y2 = ∅; for <, Y2 = {i}
– S(c) = 1, S(i) = 1

1/22/2007 Lecture10 gac1 19

Latency Constrained Example
• t = 2

– U2,* = {f,d}, U2,+/- = ∅, U2,< = ∅
– T2,* = {c}, T2,+/- = ∅, T2,< = ∅
– sf = 0, sd = 1
– For *, Y1 = {f}; for +/-, Y1 = ∅; for <, Y1 = ∅
– all resource constraints unchanged
– For *, Y2 = {d}; for +/-, Y2 = ∅; for <, Y2 = ∅
– S(f) = 2, S(d) = 2

1/22/2007 Lecture10 gac1 20

Latency Constrained Example
• If we continue this process until the algorithm terminates

– schedule has the same latency as ASAP, but requires 3
rather than 4 multipliers

+* * * *

* *

-

-

+ <

#

#

0 0 1 3 0

2 3 5 1

4
5

+* * * *

* *

-

-

+ <

#

#

0

0 0 0 0 0

2 2 2 1

4

5
6

0

6

List-scheduled times ASAP times from Lect 9

1/22/2007 Lecture10 gac1 21

Area / Speed Tradeoffs
• In general, if we allow more resources, the schedule may

have a shorter latency
• Similarly, if we allow a longer latency, the schedule may

require fewer resources
• This leads to the concept of an area / speed tradeoff

– one of a designers most important jobs is to explore this curve – and
architectural synthesis tools can help

mults (for constant # other resources)

overall
latency

can’t use fewer than one mult

can’t go faster than ASAP

achievable
designs

1/22/2007 Lecture10 gac1 22

Summary
• This lecture has covered

– resource constrained scheduling and latency constrained
scheduling

– the resource-constrained list-scheduling algorithm
– the latency-constrained list-scheduling algorithm
– area / speed tradeoffs

• Next lecture will look at optimum scheduling
methods, using Integer Linear Programming

1/22/2007 Lecture10 gac1 23

Suggested Problems
1. Re-visit the differential equation example. For two +/-

resources and one < resource, draw the complete Area /
Speed tradeoff curves achieved by applying

• resource-constrained list-scheduling
• latency-constrained list-scheduling
Are they the same? Account for any differences (**)

2. Write a program to perform one of the list-scheduling
algorithms and test it on some CDFGs of your own
invention (***)

1/22/2007 Lecture11 gac1 1

Optimum Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Optimum scheduling: why ILP?
– Integer linear program model
– Example ILP and solution

1/22/2007 Lecture11 gac1 2

Optimum Scheduling
• Last lecture we looked at an heuristic scheduling

technique: list scheduling
• We may also wish to know the optimum result for a

given scheduling problem
– optimum results are only achievable for small problems,

as resource-constrained scheduling is NP-hard
– if we design a heuristic, and it achieves near-optimal

schedules for small problems, we are usually more
confident it will do well for large problems

– optimum results form a “baseline” against which we can
compare heuristics

1/22/2007 Lecture11 gac1 3

Why ILP?
• Integer Linear Programming is useful to achieve

optimum results because
– it lets us formalize the problem
– it gives a structure to the problem: what is the objective

function, what are the constraints, how many are there,
what are their nature?

– we can use ILP solvers such as lp_solve
(ftp://ftp.es.ele.tue.nl/pub/lp_solve/) to solve
problems once they are in ILP format

1/22/2007 Lecture11 gac1 4

Notation
• We will use the following notation, mainly carried

over from previous lectures
– S(v): the scheduled start time of node v
– dv: the delay (latency) of node v
– ar: the maximum number of resources of type r
– T(v): the type of node v
– R: the set of resource types
– λ: the maximum overall latency
– ASAPv (ALAPv): the ASAP time (ALAP time) under

overall latency λ
– xvt: binary decision variable (see next slide)
– cr: the cost of a resource of type r

1/22/2007 Lecture11 gac1 5

Binary Decision Variables
• We will use a trick often used in ILP formulations: to

introduce binary decision variables
• We will use xvt (v ∈ V, t ∈ {ASAPv, ASAPv+1, …,

ALAPv}, with xvt = 1 iff node v is scheduled to start
at time t, i.e. xvt = 1 ⇔ S(v) = t

• These will allow us to formulate the resource
constraints as linear functions of xvt

• Note that if we are doing resource-constrained
scheduling, we may not know λ. Since it is an
upper bound, we can use RC list scheduling to
obtain it.

1/22/2007 Lecture11 gac1 6

Ensuring a Unique Start Time
• Our first constraint needs to be to ensure that each

operation starts at only one time

• Because xvt are constrained to be binary variables,
this means that exactly one time-index is true for
each operation

1: =∈∀ ∑
=

v

v

ALAP

ASAPt
vtxVv

1/22/2007 Lecture11 gac1 7

Specifying Data Dependencies
• Of course we can’t allow operations to start before

their predecessors in the CDFG have completed

• Each edge in the CDFG defines one of these
constraints

• Each summation represents the start time of the
particular node (v on the LHS, v’ on the RHS)

''

'

'

:),'(v

ALAP

ASAPt
tv

ALAP

ASAPt
vt dxtxtEvv

v

v

v

v

+⋅≥⋅∈∀ ∑∑
==

1/22/2007 Lecture11 gac1 8

Specifying Resource Constraints
• No more than ar operations of type r can

simultaneously execute

• The first summation is over all nodes of type r
• The second summation is over a time “window”

covering all start cycles t’ for which the operation
would still be executing by cycle t

r
rvTVv ALAPASAPtdtt

vt ax
tRr

vvv

≤

∈∀∈∀

∑ ∑
=∈ ∩+−∈)(: },...,{},...,1{'

'

},,...,0{, λ

1/22/2007 Lecture11 gac1 9

Resource-Constrained
Objective Function

• Under these constraints, the resource-constrained
scheduling problem can be solved by minimizing
the overall latency (we fix ar)

• Here, vz represents the “end” or “sink” node in the
CDFG

∑
=

⋅
zv

zv

z

ALAP

ASAPt
tvxt:min

1/22/2007 Lecture11 gac1 10

Latency-Constrained
Objective Function

• Under the same constraints, the latency-
constrained scheduling problem can be solved by
minimizing the cost of the resources required (we
fix λ)

r
Rr

rac∑
∈

:min

1/22/2007 Lecture11 gac1 11

Example ILP
• We will build an ILP for the differential equation solver as an

example
• We will formulate the latency-constrained problem for λ = 6,

the minimum possible latency
• To refresh your memories, here are the ASAP and ALAP

times for λ = 6 from Lecture 9

+* * * *

* *

-

-

+ <

#

#

s:0

a:0 b:0 c:0 d:0 e:0

f:2 g:2 h:2 i:1

j:4

k:5
z:6

+* * * *

* *

-

-

+ <

#

#

s:0

a:0 b:0 c:1 e:4

f:2 g:3 h:5 i:5

j:4

k:5
z:6

d:3

1/22/2007 Lecture11 gac1 12

Example ILP
• First, lets examine what variables we have:

• Operations with large mobility give rise to a large
number of variables

},,,,
,,,,,,,,

,,,,,,,,
,,,,,,,,{

65454

32154323

22432103

21010000

zkjii

iiihhhhg

gfeeeeed

dddccbas

xxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

1/22/2007 Lecture11 gac1 13

Example ILP
• The first constraints are unique-start-time

constraints:

1
1

1
1

1

1

1

6

5

4

54321

5432

32

2

=
=

=
=++++

=+++

=+

=

z

k

j

iiiii

hhhh

gg

f

x
x
x

xxxxx
xxxx

xx
x

1
1

1
1
1
1

43210

3210

10

0

0

0

=++++
=+++

=+
=
=
=

eeeee

dddd

cc

b

a

s

xxxxx
xxxx

xx
x
x
x

1/22/2007 Lecture11 gac1 14

Example ILP
• The next constraints are dependency constraints:

14321054321
232105432

21032

202

202
0043210

003210
0010

000
000

4321054321

32105432

1032

02

02

043210

03210

010

00

00

+⋅+⋅+⋅+⋅+⋅≥⋅+⋅+⋅+⋅+⋅
+⋅+⋅+⋅+⋅≥⋅+⋅+⋅+⋅

+⋅+⋅≥⋅+⋅

+⋅≥⋅

+⋅≥⋅
+⋅≥⋅+⋅+⋅+⋅+⋅

+⋅≥⋅+⋅+⋅+⋅
+⋅≥⋅+⋅

+⋅≥⋅
+⋅≥⋅

eeeeeiiiii

ddddhhhh

ccgg

bf

af

sddddd

sdddd

scc

sb

sa

xxxxxxxxxx
xxxxxxxx

xxxx
xx
xx

xxxxxx
xxxxx

xxx
xx
xx

1/22/2007 Lecture11 gac1 15

Example ILP
• Dependency constraints continued…

156

145
1543216

154326

2325

224

56

45

543216

54326

325

24

+⋅≥⋅

+⋅≥⋅
+⋅+⋅+⋅+⋅+⋅≥⋅

+⋅+⋅+⋅+⋅≥⋅

+⋅+⋅≥⋅

+⋅≥⋅

kz

jk

iiiiiz

hhhhz

ggk

fj

xx
xx

xxxxxx
xxxxx

xxx
xx

1/22/2007 Lecture11 gac1 16

Example ILP
• Resource constraints:

<

<

<

<

<

≤==<
≤==<
≤==<
≤==<
≤==<

axtr
axtr
axtr
axtr

axtr

i

i

i

i

i

5

4

3

2

1

:5,
:4,
:3,
:2,
:1,

−+

−+

−+

−+

−+

−+

≤+=−+=

≤++=−+=
≤+=−+=
≤+=−+=

≤=−+=
≤=−+=

/55

/444

/33

/22

/1

/0

:5,/
:4,/
:3,/
:2,/
:1,/
:0,/

axxtr
axxxtr

axxtr
axxtr

axtr
axtr

kh

jhe

he

he

e

e

1/22/2007 Lecture11 gac1 17

Example ILP
• More resource constraints:

• Objective function:
– let’s assume the cost of a mult is “2”, and that of an adder

and comparator is “1”:

*32232

*22211

*101000

*0000

:3*,

:2*,
:1*,
:0*,

axxxxxtr
axxxxxtr

axxxxxxtr
axxxxtr

ggfdd

gfddc

ddccba

dcba

≤++++==

≤++++==
≤+++++==

≤+++==

<−+ ++ aaa /*2:min
1/22/2007 Lecture11 gac1 18

Example ILP
• This (rather long!) example contains 29 binary

decision variables and 3 resource allocation
variables (total = 32) and 44 constraints

• For even this small example, the ILP model is quite
sizable
– ILP is only really practical for solving small problems

1/22/2007 Lecture11 gac1 19

Summary
• This lecture has covered

– Optimum scheduling: why ILP?
– Integer linear program model
– Example ILP and solution

• Next lecture will move off the subject of
scheduling, and start to consider algorithms
for resource sharing

1/22/2007 Lecture11 gac1 20

Suggested Problems
• Download a copy of lp_solve from the website

given at the start of the lecture, and solve the ILP
example
– what is the minimum possible cost?
– how many adders, multipliers, and comparators does it

use?
– how does that compare with a latency-constrained list-

schedule?

1/22/2007 Lecture11 gac1 1

Affine Scheduling
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Scheduling nested loops: the affine approach

1/22/2007 Lecture11 gac1 2

Nested Loop Programs
• So far, we have only looked at scheduling “straight-line”

code
– Loops can be trivially scheduled by repeating the

schedule of the loop body.
– However, this is not always the most efficient way.

• We shall now consider nested loop programs:
for i1 = l1 to u1

for i2 = l2(i1) to u2(i1)
...
for in = ln(i1,...,in-1) to un(i1,...,in-1)

S1: first statement
...
Sk: kth statement

end for
...

end for
end for

1/22/2007 Lecture11 gac1 3

Affine Nested Loop Programs
• To simplify notation, we will discuss scheduling statements,

rather than operations
– Equivalent if each statement contains a single operation.

• Our scheduling procedures so far would allocate a start time
S(u) to each statement u in the inner loop
– loops will run sequentially.

• We can do better if we make a (practical) restriction on the
functions lj and uj
– Let us denote i = (i1, i2, ..., in)T.
– We will assume lj and uj are affine, i.e.

lj (i) = ljTi + lj0,
uj (i) = uj

Ti + uj
0.

1/22/2007 Lecture11 gac1 4

The Unrolling “Solution”
• Before going further, it let us consider an easy

alternative:
– “unroll” all the loops, i.e. convert to straight-line code,
– Use one of our previous scheduling algorithms.

• Problem:
– Size of unrolled code exponential in n.
– As a result, optimal scheduling infeasible, heuristic

scheduling overwhelmed, massive FSM.

1/22/2007 Lecture11 gac1 5

Affine Schedules
• The alternative is to define a scheduling function

S(i,v): the start time of statement v in iteration i.
• If we impose a particular functional form on S(i,v),

the problem becomes tractable
– Ensure S(i,v) is “affine-by-statement”:

S(i,v) = tvTi + tv0.
• The domain of the function S is V×IS, where IS

denotes the iteration space.
• For an affine loop nest, IS is the set of integral

points inside Ai ≤ b, known as a convex polytope.

1/22/2007 Lecture11 gac1 6

Iteration Space
• This is because the lower and upper iteration bounds

impose linear constraints on i:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−−−
−

+−
−

+
−

=

−

−

1
1

001
001
0001
0001

)1(21

)1(21

11

11

nnnn

nnnn

uuu
lll

u
l

A

L

L

MMOMM

K

K

L

L

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=

0

0

0

0
2

0

0
1

n

n

n

n

u
l

u
l

u
l

b
M

1/22/2007 Lecture11 gac1 7

Iteration Space
• Geometrically:

– each constraint (a row in A and b) cuts n-dimensional
space with an (n – 1)-dimensional hyperplane.

• Graphical example:

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

i1

i 2

for i1 = 0 to 5
for i2 = 0 to 5 – i1

...
end for

end for

1/22/2007 Lecture11 gac1 8

Dependences
• As before, the key issue in scheduling is to respect

data dependences (‘flow’ dependences).
– We shall now consider inter-iteration data dependences.
– Typically, these are carried by array accesses.

– In this code, iteration (i1,i2) must execute after iteration
(i1-1,j) due to dependence carried by access to array “s”.

– In the unrolled CDFG, this would be a normal edge.

for i1 = 1 to 100
for i2 = 0 to 100

s[i1][i2] = s[i1 – 1][i2] + c[i1][i2]*x[i2]
end

end

1/22/2007 Lecture11 gac1 9

Constant dependences
• Each of the dependences imposes a linear

constraint on tv
– For our example, there is only one statement, so we

shall drop the “v” subscript, and denote the delay of this
statement by d. Then:

– In this example, there is nothing in the constraint
(1 0)t ≥ d that depends on i or j; this is a constant
dependence.

dtd
i

i
t

i
i

t TT ≥⇒+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)01(

1

2

1

2

1

1/22/2007 Lecture11 gac1 10

Constant dependences
• Constant dependences make life easier

– One linear constraint per statement
– Any feasible solution to the corresponding linear set of

constraints is a valid schedule!
– We could define an appropriate objective function,

depending on what we’re trying to optimize – overall
latency, etc.

– More complex techniques exist to deal with non-constant
(but still affine!) dependences

• P. Feautrier, “Some Efficient Solutions to the Affine Scheduling
Problem I: One-Dimensional Time”, Int. J. Parallel Programming
21(5), 1992, pp. 313-347.

1/22/2007 Lecture11 gac1 11

Example Objective
• We have our constraints: what about an objective

function?
– Instance i of statement v completes by tvTi + tv0 + d(v).
– This linear function of i will be maximized at one of the

vertices.
– For each vertex i, introduce a constraint

λ ≥ tvTi + tv0 + d(v).
– Min latency objective is then just min: λ.

1/22/2007 Lecture11 gac1 12

Limitations
• Affine scheduling sub-optimal, e.g. the code below, where n

is some constant known at synthesis time.

• The code is completely sequential. The best (non-affine)
schedule is S(i,j) = i(i +1)/2 + j, giving overall latency
n(n + 3)/2. The best affine schedule S(i,j) = ni + j, which is
much worse (approx twice as slow), at n(n +1).

• Can use multi-dimensional “time” polynomial schedules.

for i = 0 to n
for j = 0 to i

s = s + a(i,j)
end for

end for

1/22/2007 Lecture11 gac1 13

Summary
• This lecture has covered

– Affine nested loop programs
– Affine schedules
– Constant and affine dependences
– The vertex method
– Limitations of affine schedules.

• Next lecture will move off the subject of
scheduling, and start to consider algorithms
for resource sharing.

1/22/2007 Lecture11 gac1 14

Suggested Problems
• Consider the code below.
• Determine the flow dependences, and construct a

linear program to schedule this code.
– Assume each statement takes a single cycle

for i = 1 to 10
for j = i to 2*i

x[i][j] = x[i - 1][j] * x[i][j – 1]

1/22/2007 Lecture12 gac1 1

Resource Sharing
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Non-hierarchical CDFGs
– Hierarchical CDFGs

1/22/2007 Lecture12 gac1 2

Introduction
• We will consider some approaches for sharing

resources between operations
• Non-hierarchical and hierarchical CDFGs will be

considered separately
– problem has different complexity

• Remember that hierarchical CDFGs can be used to
represent the following (Lecture 1)
– conditionals
– loops
– function calls

1/22/2007 Lecture12 gac1 3

Resource Conflict Graph
• The one fundamental restriction on sharing

resources:
– two operations executing simultaneously cannot be

executed on the same resource
• This leads to the concept of “resource conflict”
• Two operations are in resource conflict if they

overlap in execution time
• A resource conflict graph uses the same node set

as the CDFG, but uses a set of undirected edges
such that: (Lecture 2)
– two operations are joined by an edge iff they are in

resource conflict
1/22/2007 Lecture12 gac1 4

Non-Hierarchical CDFGs
• For non-hierarchical CDFGs (i.e. those with just

one level of hierarchy), such a conflict graph is
simple

+ *

* +

#

a:0 b:0

c:1 d:2

#

+

+

a

d

non-hierarchical CDFG

adder
conflict graph

*

*

b

c

multiplier
conflict graph

1/22/2007 Lecture12 gac1 5

Graph Structure
• Conflict graphs for non-hierarchical CDFGs are

interval graphs
• Recall from Lecture 5 that an interval graph is one

whose vertices can be put in one-to-one
correspondence with a set of intervals, such that
two vertices are connected by an edge iff the
corresponding intervals intersect

• Also recall from Lecture 5 that such graphs are
colourable easily in polynomial time using the left-
edge algorithm

1/22/2007 Lecture12 gac1 6

Solution via Left-Edge
• We can therefore find an optimum binding using left-edge, reproduced

below from Lecture 5
– use the scheduled start and end times as the left and right “edges”,

respectively
Left_Edge(G(V,E))
begin

sort nodes in ascending order of left edge – store in L
c := 1;
while(not all vertices have been coloured) {
r := 0;
while(there is a vertex in L with ls > r) {
vs := first node in L with ls > r;
r: = rs;
label vs with colour c
L := L \ {vs}; }

c := c + 1; }
end

1/22/2007 Lecture12 gac1 7

Left-Edge: Example
• Taking the previous example:

• So use one adder to do both a and d, but different
multipliers to do b and c

• Formally, Y(a) = (+,1); Y(b) = (*,1); Y(c)=(*,2); Y(d)=(+,1)

a

d

+

+

a

d

b

c

*

*

b

c

c=1 c=1 c=2

1/22/2007 Lecture12 gac1 8

Hierarchical CDFGs
• Consider a simple hierarchical CDFG with function

calls, performing the same function as the previous
example

F F

#

a:0 b:0

#

#

+

*

c:0

d:1

#

*

+

#

#

e:0

f:2

1/22/2007 Lecture12 gac1 9

Hierarchical CDFGs
• How do we perform resource sharing?

– a naïve approach would be to perform resource sharing
on each level of the hierarchy in turn

– for our example, this would lead to one multiplier and one
adder for each function: one more adder than we needed
for the non-hierarchical version

• We should try to share resources across the levels
of hierarchy

1/22/2007 Lecture12 gac1 10

Conditionals
• Conditionals help us share resources, as the two

branches (“if” and “else”) are never needed
simultaneously

B

#

<

#

#

*

#

#

*

#

a = b < c;
if (a) then

d = b * b;
else

d = c * c;

a:0

b:1c:1 d:1

• Operations c and d are not in resource conflict,
although they have the same type and “overlap” in
time

1/22/2007 Lecture12 gac1 11

Multiple Function Calls
• Multiple calls to the same function complicate

matters, as operations can have several execution
times

F

#

a:0

#

*

+

#

#

c:0,3

d:2,5
Fb:3

fun(p) {
return p*p + 5;

}

a = fun(x);
b = fun(a);

1/22/2007 Lecture12 gac1 12

Graph Properties
• Conditionals and multiple function calls change the

structure of the conflict graph
– it no longer must be an interval graph
– the left-edge algorithm is therefore no longer applicable

• We need an heuristic approach to colouring the
graph
– one such algorithm is given in Lecture 5

1/22/2007 Lecture12 gac1 13

Colouring Heuristic
• Here is the colouring heuristic from Lecture 5:

• We will apply it to an example with conditionals and
multiple function calls

Colour_Graph(G(V,E))
begin
foreach v ∈ V {
c = 1;
while ∃(v,v’) ∈ E : v’ has colour c

c = c + 1;
label v with colour c }

end

1/22/2007 Lecture12 gac1 14

Hierarchical Example
• Here is a more complex scheduled CDFG

a = fun(x);
b = fun(a);
if (y) then

c = b * b;
else

c = 2 * b;
d = 3*b;

F

#

a:0

#

*

+

#

#

c:0,3

d:2,5
Fb:3

B

*

#

#

*

#

e:6

g:6f:6

*h:6

fun(p) {
t1 = p*p;
return t1 + 5;

}

1/22/2007 Lecture12 gac1 15

Hierarchical Example

• Let’s colour the multiplier nodes in the order:
c, f, g, h
– c gets colour 1; f gets colour 1; g gets colour 1; h gets

colour 2
– we need two mults and an add

c f

g
d

multiplier conflict graph adder conflict graph

• Remember f and g don’t conflict (if / else)

h

1/22/2007 Lecture12 gac1 16

Example Datapath

t1

a
b
c
d

(multiplier,1) (adder,1)

xx 2

from
control
unit

5

(multiplier,2)

3

1/22/2007 Lecture12 gac1 17

Summary
• We have investigated resource sharing for

both
– Non-hierarchical CDFGs
– Hierarchical CDFGs

• Next lecture we will look at register sharing

1/22/2007 Lecture12 gac1 18

Suggested Problems
• Perform a resource binding for the list-scheduled

differential equation example from Lecture 10 and
draw the completed datapath (*)

• Design a controller for this datapath (*)
• Discuss resource binding for conditionals within

conditionals (****)
• Discuss a possible approach to resource binding

for loops (****)
• De Micheli, Problems 6.11, No. 1 (conflict graphs

only) (*)

1/22/2007 Lecture13 gac1 1

Register Sharing
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The register sharing problem
– Variable lifetime calculation
– Register conflict graphs
– Non-hierarchical register sharing
– Hierarchical register sharing: the loop problem

1/22/2007 Lecture13 gac1 2

Register Sharing
• We have discussed sharing of arithmetic resources

– registers also consume silicon area
• Registers are required for each intermediate result

passed across a clock-cycle boundary
• So far, we have used a distinct register for each

intermediate result
– but we could share registers if results are not needed at

the same time

1/22/2007 Lecture13 gac1 3

Lifetime Analysis
• Consider the code and scheduled CDFG below

– it has inputs x and y, and output f

z1 = 2*x;
z2 = 3*y;
z3 = z1*z2;
z4 = x*x;
z5 = z3 – 2;
z6 = z2*z4;
f = z5 – z6;

*

x

*
y

*z1 z2
*

x

*

z4

-z3

-z5 z6

f
#

#

0 0

2

4

1

3

5

z2

1/22/2007 Lecture13 gac1 4

Lifetime Analysis
• Let’s analyse the lifetime for which each result is required

– z1 is produced during cycle 1 and consumed during cycle 2
– z2 is produced during cycle 1 and consumed both

during cycle 2 and cycle 3
– z3 is produced during cycle 3 and consumed during cycle 4
– z4 is produced during cycle 2 and consumed during cycle 3
– z5 is produced during cycle 4 and consumed during cycle 5
– z6 is produced during cycle 4 and consumed during cycle 5
– f is produced during cycle 5 and consumed at some unknown time

• A register must be allocated to each result from the period
AFTER production, to the period DURING the last
consumption
– this is the variable “lifetime”

1/22/2007 Lecture13 gac1 5

Register Conflict Graph
• Two results cannot share a register if their lifetimes

overlap
– we can thus create a register conflict graph just like the

resource conflict graph used in the previous lecture

z1 z2

z4

z5 z6

z3

cycle 0
cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

z1 z2

z3
z4

z5 z6
fcycle 6 f

1/22/2007 Lecture13 gac1 6

Register Conflict Graph
• As with resource sharing, for the non-hierarchical

case the register conflict graph is an interval graph
– optimum solution through the left-edge algorithm

• Our example conflict graph can be coloured with
only two colours
– only two registers are required
– z1, z3, z4, z6 and f share a register
– z2 and z5 share a register

z1

z4

z6

z3

z2

z5

f

1/22/2007 Lecture13 gac1 7

Example Datapath

• Note the multiplexers on the register inputs
– sharing resources leads to MUXs on resource inputs
– sharing registers leads to MUXs on register inputs

• So what would the datapath be for that design?

z1/z3/z4/z6/f

z2/z5 from
control
unitto MUXs

and resources

z1
z3
z4
z6

z2
z5

(from
resources)

from
control unit

f

1/22/2007 Lecture13 gac1 8

Register sharing for loops
• As with resource sharing, things get more

complicated for hierarchical CDFGs
– we will not consider the general problem
– but we will examine the effect of loops to give you a

glimpse
• Consider the following sum-of-squares code and

scheduled CDFG

total = 0;
for n=0 to 9

z1 = x[n]*x[n];
total = total + z1;

end

L

#

#

#

*

+

#

0
3n

3n+2

0
3n

30
3n+3

total

x total

total

x[n]

z1

1/22/2007 Lecture13 gac1 9

Register sharing for loops
• The result “total” is required to keep its value

BETWEEN loop iterations
– it is produced at cycles 3,6,9,…30 (excluding the

initialization) and consumed at cycles 2,5,8,…,29, and at
an unknown time after cycle 30

cycle 3n+0
cycle 3n+1
cycle 3n+2 z1

total

total totalz1

1/22/2007 Lecture13 gac1 10

Register sharing for loops
• Because of the “circular arc” wrap around effect

with some variables, the conflict graphs for
hierarchical CDFGs are not always interval graphs

• Colouring such general graphs is NP-hard,
requiring the use of our colouring heuristic (or
similar)

1/22/2007 Lecture13 gac1 11

Summary
• We have investigated register sharing:

– Variable lifetime calculation
– Register conflict graphs
– Non-hierarchical register sharing
– Hierarchical register sharing: the loop problem

• Next lecture we will look at the module
selection problem

1/22/2007 Lecture13 gac1 12

Suggested Problems
• Perform a resource binding, and thus complete the partial

example datapath given this lecture (*)
• To what extent can the registers be shared in the resource-

constrained list-scheduled example of Lecture 10? (*)
• How important is register sharing? (think about it…) (***)
• Consider what problems, if any, you may have extending

the framework discussed in this lecture to (****)
– function calls (with one call per function)
– function calls (with unlimited calls per function)
– conditionals

1/22/2007 Lecture14 gac1 1

Module Selection
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– The module selection problem
– Module selection / scheduling / binding interaction
– An ILP formulation

1/22/2007 Lecture14 gac1 2

Module Selection
• So far, we have considered only one resource type

capable of performing each operation, e.g.
– an adder/subtractor performs additions or subtractions
– a multiplier performs multiplications

• We could have different possibilities, e.g.
– either an adder/subtractor or an ALU could perform an

addition
– either a ripple-carry adder or a carry-lookahead adder

could perform an addition
• Module selection is the task of selecting an

appropriate type of resource to perform each
operations

1/22/2007 Lecture14 gac1 3

Interactions
• Ideally, we would like to perform module selection

before scheduling
– different resource types for a given operation may have

different latencies
– we need to know the latency (or at least an upper bound)

before we can schedule
• However, ideally we would like to combine module

selection and resource binding
– we don’t know which operations can share resources

until we know the resource type of each operation
– delaying module selection until binding will help us find a

low-area implementation

1/22/2007 Lecture14 gac1 4

Interactions
• For example, consider the code and CDFG below

z1 = x*2;
f1 = z1 < 3;
f2 = x+2;

#

+ *

<

#

a b

c

• Assume we have the following library:
• Adder: 1 area unit / latency 1 cycle, Comparator: 1 area

unit / latency 1 cycle, ALU: 1.5 area units / latency 2
cycles, Multiplier: 2 area units / latency 2 cycles

1/22/2007 Lecture14 gac1 5

Interactions
• We may wish to implement

– a in an adder, c in a comparator
– a and c in ALUs

• The second option is only useful if the operations can share
a single ALU, otherwise it is a waste of area and latency

• We don’t know if they can share a single ALU until after
scheduling
– we should perform module selection after scheduling

• But we don’t know the latencies until module selection
– we should perform module selection before scheduling

1/22/2007 Lecture14 gac1 6

Interactions
• Since we perform scheduling before binding, there

is clearly a contradiction
– we want to do module selection early in the design flow
– we want to do module selection late in the design flow

• One solution is to perform scheduling, module
selection, and resource binding concurrently as a
single problem
– advantage: leads to high-quality solutions
– disadvantage: leads to a complex problem to solve

1/22/2007 Lecture14 gac1 7

ILP Formulation
• It is relatively straightforward to extend our ILP

scheduling approach to consider the combined
problem

• Rather than using variables xvt to indicate the
scheduling of operation v at time t
– we assume we know an upper bound ar on the number of

resources required of type r ∈ R
– use xvtir to indicate the scheduling of operation v at time t

on instance i ∈ {1,…,ar} of resource type r ∈ R
– one variable xvtir exists for all v ∈ V, t ∈ { ASAPv, …,

ALAPv }, r ∈ T(v), i ∈ {1,…, ar}

1/22/2007 Lecture14 gac1 8

ILP Formulation
– T(v) is the type set of operation v. For our previous

example, T(*) = *; T(<) = {ALU,<}; T(+) = {ALU, +/-}
• The module selection problem is thus choosing a

single member of T(v) for each v ∈ V
– We will combine module selection, scheduling, and

binding, to achieve an optimum result
• In addition to xvtir, we will use a binary variable bir

for each instance of each resource type
– bir = 1 ⇔ instance i of resource type r is used by at least

one operation
– as before, we will use cr to denote the cost of a resource

of type r

1/22/2007 Lecture14 gac1 9

ILP Formulation
• Unlike the ILP scheduling in Lecture 11, a CDFG

node does not have a fixed delay
– it depends on which resource type implements the

operation
• For this reason, we associate delays with resource

types: type r has delay dr

• There is at least one resource type with minimum
delay dmin v

• The ASAP and ALAP scheduling is performed by
assuming each operation has its minimum delay

1/22/2007 Lecture14 gac1 10

ILP Formulation
• We will also introduce one more symbol which will

make the formulation easier to follow:
• W represents the set of all times that any operation

could possibly start at:

U
Vv

vv ALAPASAPW
∈

= },...,{

1/22/2007 Lecture14 gac1 11

Objective Function
• We are now in a position to formulate the “minimum

cost” objective function:

∑ ∑
∈ =Rr

a

i
irr

r

bc
1

 :minimize

1/22/2007 Lecture14 gac1 12

Binding Constraints
• Each operation must be mapped to a single

instance of a single resource type, operating at a
single time:

1,
)(1

min

=∈∀ ∑ ∑ ∑
∈ =

+−

=vTr

a

i

ddALAP

ASAPt
vtir

r vrv

v

xVv

• Note that an operation with ALAP time ALAPv
cannot execute later than ALAPv – dv + dmin v when
performed on a resource with delay dr

1/22/2007 Lecture14 gac1 13

Resource Constraints
• No one instance of any resource type can execute

more than one operation at a time
– indeed, if the instance is unused, no operations may

execute on that instance

ir
vTrVv ddALAPASAPdttt

irvt

r

bx
aiRrWt

vrvvr

≤

∈∀∈∀∈∀

∑ ∑
∈∈ +−∩−+∈)(: },...,{}1,...,{'

'
min

},,...,1{,,

• As before, the 2nd summation is over a “time window” during
which operations could overlap

1/22/2007 Lecture14 gac1 14

Dependencies
• As previously, we need to encode each

dependency in the CDFG

∑ ∑ ∑∑ ∑ ∑
∈ =

+−

=∈ =

+−

=

⋅+≥⋅

∈∀

)'(1
'

)(1

'min'

'

min

)(

,),'(

vTr

a

i

ddALAP

ASAPt
tirvr

vTr

a

i

ddALAP

ASAPt
vtir

r vrv

v

r vrv

v

xdtxt

Evv

• The main difference with the previous formulation is
simply bringing the execution delay into the RHS
summations, as it depends on the resource type

1/22/2007 Lecture14 gac1 15

ILP Example
• To illustrate the method, we will complete an ILP for

the simple example earlier this lecture
– let a* = 1, a+ = 1, a< = 1, aALU = 2
– (we can’t use more resource than operations of that type)
– note that aALU is overkill, as we mentioned earlier
– let d* = 2, d+ = 1, d< = 1, dALU = 2
– let c* = 2, c+ = 1, c< = 1, cALU = 1.5
– let λ = 4 (not a tight constraint)
– then ASAPa = 0, ASAPb = 0,

ASAPc = 2, ALAPa = 3, ALAPb = 1,
ALAPc = 3

#

+ *

<

#

a b

c

1/22/2007 Lecture14 gac1 16

ILP Example
• So W = {0,1,2,3}∪{0,1} ∪{2,3} = {0,1,2,3}

• Our objective function is then:

)(5.1112 ,2,1,1,1,*1 ALUALU bbbbb ++++ <+
 :minimize

1/22/2007 Lecture14 gac1 17

ILP Example
• Binding constraints:

1
:

,2,2,,2,1,,2,0,,1,2,,1,1,

,1,0,,1,3,,1,2,,1,1,,1,0,

=++++

+++++= ++++

ALUaALUaALUaALUaALUa

ALUaaaaa

xxxxx
xxxxxav

1: ,*1,1,,*1,0, =+= bb xxbv

1: ,2,2,,1,2,,1,3,,1,2, =+++= << ALUcALUccc xxxxcv

1/22/2007 Lecture14 gac1 18

ILP Example
• Resource constraints:

++

++

++

++

≤=+==

≤=+==

≤=+==

≤=+==

,1,1,3,

,1,1,2,

,1,1,1,

,1,1,0,

:1,,3
:1,,2
:1,,1
:1,,0

bxirt
bxirt

bxirt
bxirt

a

a

a

a

1/22/2007 Lecture14 gac1 19

ILP Example
• More resource constraints:

<<

<<

≤==<=

≤==<=

≤===

≤+===

,1,1,3,

,1,1,2,

,*1,*1,1,

,*1,*1,1,,*1,0,

:1,,3
:1,,2
:1*,,1
:1*,,0

bxirt
bxirt
bxirt

bxxirt

c

c

b

bb

1/22/2007 Lecture14 gac1 20

ILP Example
• More resource constraints:

ALUALUcALUa

ALUALUcALUa

ALUALUcALUaALUa

ALUALUcALUaALUa

ALUALUaALUa

ALUALUaALUa

bxxiALUrt
bxxiALUrt

bxxxiALUrt
bxxxiALUrt

bxxiALUrt
bxxiALUrt

,2,2,2,,2,2,

,1,1,2,,1,2,

,2,2,2,,2,2,,2,1,

,1,1,2,,1,2,,1,1,

,2,2,1,,2,0,

,1,1,1,,1,0,

:2,,2
:1,,2
:2,,1
:1,,1
:2,,0
:1,,0

≤+===

≤+===

≤++===

≤++===

≤+===

≤+===

1/22/2007 Lecture14 gac1 21

ILP Example

• Dependency constraint:

,*1,1,,*1,0,,2,2,,1,2,

,1,3,,1,2,

)21()20(22
32:,'

bbALUcALUc

cc

xxxx
xxcvbv

+++≥+

++== <<

1/22/2007 Lecture14 gac1 22

Summary
• This lecture has covered

– The module selection problem
– Module selection / scheduling / binding

interaction
– An ILP formulation

• Next lecture we will examine the retiming
problem.

1/22/2007 Lecture14 gac1 23

Suggested Problems
• Download a copy of lp_solve from the website

given at the start of Lecture 11, and solve the ILP
example
– what is the minimum possible cost? (*)
– how many adders, multipliers, comparators and ALUs

does it use? (*)
– how many variables and constraints are there? (*)
– how do you think the number of variables and constraints

vary with the size of the CDFG? (***)

1/22/2007 Lecture15 gac1 1

Retiming
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Floorplanning
– Function Approximation
– Perspectives for the future

• This lecture covers
– Retiming: motivation and definitions
– Delay-weighted DFGs
– Retiming for clock period minimization

1/22/2007 Lecture15 gac1 2

Motivation
• Our concentration so far has been on synthesising “straight-

line code” or single loop iterations
• We have also briefly generalized this using CDFGs
• Often, algorithms will contain loop-carried dependencies,

e.g. this IIR filter:
a = 0; b = 0; c = 0;
while(true) {

read x;
y = x + a;
a’ = 0.1*b + 0.2*c;
b’ = y;
c’ = b;
a = a’; b = b’; c = c’;
write y;

}

An IIR filter with transfer
function

32 2.01.01
1)(−− −−

=
zz

zH

1/22/2007 Lecture15 gac1 3

Motivation
• There is an alternative way of writing this code:

d = 0; e = 0; f = 0; g = 0;
while(true) {

read x;
y = x + d + g;
d’ = 0.1*e;
e’ = y;
f’ = e;
g’ = 0.2*f;
d = d’; e = e’; f = f’; g = g’;
write y;

}

(We will soon see how you
can prove the equivalence)

1/22/2007 Lecture15 gac1 4

Motivation
• Comparing the CDFGs of the two inner loops, we can see

that they may have different minimum latency.
#

+ *

+

#

x

b

*
c

#

*

+

+

#

e

x*

fr

w

a r

w

d,g

min latency =
max{Tr+Tw,T*}+T+

min latency =
max{T*,2T++Tw,Tr+T++Tw}

potential speedup

1/22/2007 Lecture15 gac1 5

Retiming an operator
• This type of code transformation is called retiming,

and derives from the following simple observation:

combinational
logic

combinational
logic

… has identical behaviour to …

• We can move a
register through an
operation without
affecting the “outside
world” view of
behaviour

1/22/2007 Lecture15 gac1 6

The initialization problem
• We must, however, give some thought to the

initialization of the system
• For example,

… has identical behaviour to …
initially 0

initially 1

• This is fine for forward
retiming, i.e. moving the
register from an input to
an output.

• Backward retiming
requires there to be an
appropriate set of inputs
that generate the desired
output

1/22/2007 Lecture15 gac1 7

The delay-weighted DFG
• To be able to formally reason about retiming issues, we

need to represent the entire loop as a form of DFG,
including information on loop-carried dependencies.

• We will do this by an edge-weighted DFG, where each edge
weight represents the number of iterations delay on that
edge. We will call this a delay-weighted DFG.

• Note that when we have a loop-carried dependency, the
delay-weighted DFG will contain a cycle.

1/22/2007 Lecture15 gac1 8

Delay-Weighted DFG

• This is our original example and its delay-weighted DFG
• Noting that the only output of the lower adder has weight 1,

we can retime backwards across this adder, resulting in…

a = 0; b = 0; c = 0;
while(true) {

read x;
y = x + a;
a’ = 0.1*b + 0.2*c;
b’ = y;
c’ = b;
a = a’; b = b’; c = c’;
write y;

}

*

+

+

*

r w
0 0

21
0

1

0

a’ a

1/22/2007 Lecture15 gac1 9

Delay-Weighted DFG

• … which corresponds to our modified example

*

+

+

*

r w
0 0

21
1

0

1

d = 0; e = 0; f = 0; g = 0;
while(true) {

read x;
y = x + d + g;
d’ = 0.1*e;
e’ = y;
f’ = e;
g’ = 0.2*f;
d = d’; e = e’; f = f’; g = g’;
write y;

}

1/22/2007 Lecture15 gac1 10

Approaching the problem
• We can associate the nodes V with a retiming value

r: V → Z which denotes the number of clock cycles
that node has been moved “forwards in time”

• If we denote by w: E → Z the original weight, and
wr: E → Z the retimed weight, then
for all (u,v) ∈ E, wr(u,v) = w(u,v) + r(v) – r(u)

• A feasible retiming is one for which for all
(u,v) ∈ E, wr(u,v) ≥ 0 (since we can’t have a
negative number of registers)

1/22/2007 Lecture15 gac1 11

Retiming for Clock-Period Min
• There are several reasons why we may wish to retime,

including for speed and for minimization of registers.
• We will address retiming for clock-period minimization, i.e.

clock frequency maximization.
• The maximum clock frequency is determined by the worst-

case combinational delay between any two registers, or
from an input to a register, or from an register to an output.

• Let us denote by d(v) the combinational delay of node v,
and we will assume all nodes are combinational.

1/22/2007 Lecture15 gac1 12

Retiming problem formulation
• We must therefore have the notion of a

combinational path, i.e. a path that does not pass
through any registers.

– wr(u,v) = 0 ⇒ combinational path.

1/22/2007 Lecture15 gac1 13

An ILP Solution
• We can modify the LP for

longest-path given in
Lecture 8 to:

• Minimize L s.t.

E(u,vNvuwudss ruv ∈++≥) allfor),()(

VvLvdsv ∈≤+ all for)(

E(u,vurvrvuwvuwr ∈≥−+=)0)()(),(),(all for

(2)

(1)

(3)

VvZvr ∈∈ allfor)((4)

1/22/2007 Lecture15 gac1 14

An ILP Solution
• Here N is a “large-enough” negative number.
• L corresponds to the longest combinational path, a

fact guaranteed by (2), which ensures it is at least
as large as the largest (sv + delay of node v).

• (1) is simply an extension of Bellman’s equations. If
wr(u,v) = 0, it is a direct implementation of
Bellman’s. wr(u,v) > 0, (1) is satisfied no matter
what (due to N being large, and wr being integer
(4)).

• Finally, (3) combines the definition of wr(u,v) with
the feasibility constraint.

1/22/2007 Lecture15 gac1 15

Example

• The retimed example also corresponds to a feasible
solution, with sv1 = 0, sv2 = 1, sv3 = 2, sv4 = 0, sv5 = 0, sv6 = 0,
L = 2: an improvement!

*

+

+

*

r w
0 0

21
0

1

0

v1 v2 v3

v4
v5

v6

• Let’s say d(v2) = d(v4) = 1, d(v1) =
d(v3) = 0, d(v5) = d(v6) = 2

• If the retiming left the graph
unchanged, then r(v1)=r(v2)=r(v3)=
r(v4)=r(v5)=r(v6)=0

• It should be easily verifiable that (1)-
(4) are satisfied in this case, with sv1
= 0, sv2 = 0, sv3 = 1, sv4 = 2, sv5 = 0,
sv6 = 0, L = 3

1/22/2007 Lecture15 gac1 16

Summary
• This lecture has covered

– Retiming: motivation and definitions
– Delay-weighted DFGs
– Retiming for clock-period minimization

• The next lecture will investigate the
floorplanning problem.

1/22/2007 Lecture15 gac1 17

Suggested Problems
• Is the retiming shown in the example optimal?
• The edge-weighted DFG of a two-stage lattice filter

is shown below: retime the DFG to improve the
clock rate given that the delay of a multiplier is 2ns,
the delay of an adder is 1ns, and the delay of an
I/O node is 0ns.

+

*

*

+

r

w

+

*

*

+
2

2

2

2

(unlabelled edges have
zero weight)

1/22/2007 Lecture16 gac1 1

Floorplanning
• The final portion of the course covers

– Scheduling algorithms
– Resource sharing algorithms
– Module selection
– Retiming
– Floorplanning
– Function approximation
– Perspectives for the future

• This lecture covers
– The floorplanning problem
– Slicing and non-slicing floorplans and representations
– Heuristic and ILP solutions

1/22/2007 Lecture16 gac1 2

Motivation
• In recent years, we have moved to deep sub-

micron design.
• Wiring delays have started to compete with (and

sometimes overtake) logic delay.
– it is important to be able to estimate wiring delay early in

the design process.
• We need an early idea of geometrical layout on

silicon
– a floorplan.

• Floorplanning becomes part of architectural
synthesis.

1/22/2007 Lecture16 gac1 3

Slicing Floorplans
• Floorplans are typically categorised into

– slicing floorplans or non-slicing floorplans

• Slicing floorplan
– obtainable by repeated bisection of rectangular cells
– simplifies representation and optimization

A slicing floorplan A non-slicing floorplan

1 2 3
4 5

6

7

1

2

3
4

5

1/22/2007 Lecture16 gac1 4

Slicing Tree Representation
• A slicing tree is a binary tree representation of a

slicing floorplan
– a leaf is a resource to be floorplanned
– other nodes indicate how to compose their children:

vertically, or horizontally.

1 2 3
4 5

6

7

V

7 H

H

1 2

H

3 V

6 H

4 5

1/22/2007 Lecture16 gac1 5

Skewed Slicing Trees
• Unfortunately, slicing trees are not unique

representations of the floorplan.

1 2 3
4 5

6

7

V

7 H

H

1 2

H

3 V

6 H

4 5

V

7 H

H

1 2

3

V

6 H

4 5

H

Both slicing trees are valid representations
1/22/2007 Lecture16 gac1 6

Skewed Slicing Trees
• A skewed slicing tree has the following property

– no node and its right-child have the same type
• Every slicing floorplan has a unique skewed slicing

tree.
• How to represent the trees in a floorplanning

algorithm?
– we can represent it as a string, called a Polish

expression.

1/22/2007 Lecture16 gac1 7

Polish Expressions
V

7 H

H

1 2

3

V

6 H

4 5

H

• A skewed slicing tree corresponds to a Polish
expression where
– no two consecutive operators (H/V) are of the same type.

• Polish expression for:
Polish(Y)+Polish(Z)+“X”

• Polish expression for leaf is
leaf value.

• For tree on the left:
“712H3H645HVHV”

X

Y Z

1/22/2007 Lecture16 gac1 8

Floorplan Optimization
• We have a compact and unique representation of a

slicing floorplan. How to optimize for smallest area?
• A common approach:

– start with a random floorplan
– improve it based on certain well-defined “moves”

• What moves1?
– Swap two adjacent operands (leaf nodes) in the Polish

expression.
– Take a chain of consecutive operators, e.g. “HVHV”, and

complement it, e.g. “VHVH”.
– Swap an adjacent operator and operand. (But make sure still a

skewed tree!)
1 Moves from Prof. Hai Zhou

1/22/2007 Lecture16 gac1 9

Floorplan Optimization

12H3H

1 2

3
1

2

3

213VH

12V3H1

2

3

1
2

3 21V3H

1/22/2007 Lecture16 gac1 10

Area Computation
• How to tell whether a move improves area?

– Height(XYH) = max(Height(X), Height(Y))
– Width(XYH) = Width(X) + Width(Y)
– Height(XYV) = Height(X) + Height(Y)
– Width(XYV) = max(Width(X), Width(Y))

21V3H1

2

3
Height(21V3H) = max(Height(21V), Height(3))

= max(Height(2) + Height(1), Height(3))

Width(21V3H) = Width(21V) + Width(3)
= max(Width(2), Width(1)) + Width(3)

1/22/2007 Lecture16 gac1 11

Simulated Annealing
• In our example, not all moves improved area

– not good enough to just “pick the best move” each time
• Simulated annealing is often used

– pick a move at random.
– if it improves area, do it.
– if it doesn’t improve area, maybe do it.

• Probability of selecting a move that does not
improve area
– reduces with area penalty for move
– decreases (for a fixed area penalty) with iteration number

1/22/2007 Lecture16 gac1 12

An ILP Approach
• We can also take an ILP approach to the

floorplanning problem
– guaranteed optimal solutions
– slicing and non-slicing floorplans within a single

framework
– poor execution-time scaling

1/22/2007 Lecture16 gac1 13

An ILP Approach
• Resources cannot overlap

xi

xj

yiyj

wj

wihj

hi

xi ≥ xj + wj (1)

xj ≥ xi + wi (2)

yi ≥ yj + hj (3)

yj ≥ yi + hi (4)

• We need to ensure that at
least one of (1)-(4) holds

1/22/2007 Lecture16 gac1 14

An ILP Approach
• Although each constraint is linear, “at least one of”

causes us a problem.
• A solution: all constraints below hold.

– P is a big enough positive number, e.g. max chip
dimension. For all (i,j) ∈ R2, (1) to (4) must hold.

xi + Pδij + Pηij ≥ xj + wj (1)

xj + P(1 - δij) + Pηij ≥ xi + wi (2)

yi + Pδij + P(1 - ηij) ≥ yj + hj (3)

yj + P(1 - δij) + P(1 - ηij) ≥ yi + hi (4)

δij, ηij ∈ B

1/22/2007 Lecture16 gac1 15

Good Floorplanning
• Some floorplans are better than others

– place resources that communicate close to each other.

• Given a maximum wire-length Wij for each pair
(i,j) ∈ R2 of connected resources, (5)-(9) must hold.

(9)

(8)

(7)

(6)

(5)

v
ij

h
ijij

v
ijjjii

v
ijjjii

h
ijjjii

h
ijjjii

WWW

Whyhy

Whyhy

Wwxwx

Wwxwx

+=

≤++−−

≤−−+

≤++−−

≤−−+

5.05.0

5.05.0

5.05.0

5.05.0

xi

xj

yi
yj

wj

wihj

hi

1/22/2007 Lecture16 gac1 16

Good Floorplanning
• Constraints (5) & (6) ensure that horizontal

wirelength is no more than Wij
h.

– (7) and (8) perform a similar function for vertical
wirelength.

• Constraint (9) expresses total wirelength in terms of
Manhattan distance.

appropriate
for most
design rules

linear

1/22/2007 Lecture16 gac1 17

Design Area
• We must ensure that the design fits in chip

dimensions X by Y.
– For all resources i ∈ R, (10) and (11) must hold.

• If the chip aspect ratio is given, Y = kX (12).
– Objective is then min: X

• If aspect ratio is not given, we have min: XY
– problem: nonlinear objective

(11)
(10)

Yhy
Xwx

ii

ii

≤+
≤+

1/22/2007 Lecture16 gac1 18

Linearization
• Two standard approaches

– iterate: solve “min: X” with Y fixed, many times
for different values of Y.

– approximate:
XY ≈ X’ Y’ + (X - X’)Y’ + (Y - Y’) X’ for
X ≈ X’ and Y ≈ Y’.

– (or some combination of the two).

• More recently, convex (nonlinear) optimization
techniques have started to appear.

1/22/2007 Lecture16 gac1 19

ILP Approaches
• The approach has a (very) large execution time:

O(n2) integer variables.
– techniques have been proposed to break down into sub-

problems1.
– sub-problems can be stitched into suboptimal solutions.

1Sutanthavibul, Schragowitz, and Rosen, IEEE Trans CAD 10(6), 1991.
Smith, Constantinides, and Cheung, Proc. Field-Programmable Logic, 2005 (in
the context of FPGA design).

1/22/2007 Lecture16 gac1 20

Summary
• This lecture has introduced floorplanning

– motivation: deep-submicron era
– slicing vs non-slicing floorplans
– Polish expressions
– optimizing moves
– an ILP approach

• The next lecture will look at function approximation.

1/22/2007 Lecture16 gac1 21

Suggested Problems
• Draw the floorplan represented by the following slicing tree:

• Convert this tree into a skewed slicing tree.
• Write the Polish expression for the skewed tree.
• Identify one of the three moves proposed in this lecture that could be

applied to obtain an optimal area floorplan for the given resource
dimensions.
– Resource 1: Height = 2, Width = 2
– Resource 2: Height = 2, Width = 1
– Resource 3: Height = 1, Width = 1
– Resource 4: Height = 1, Width = 1

V
V

1H
2

4 3

1/22/2007 Lecture16 gac1 1

Beyond Mults and Adds
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture covers
– Polynomial approximations
– Evaluation methods
– Approximation methods

1/22/2007 Lecture16 gac1 2

Function Evaluation
• Throughout much of the course, we have used

multiplication and addition as the key operations
• There are typically pre-designed library blocks for

adder and multiplier resources
• Not necessarily the case for more complex

functions: sin(x), cos(x), ex, etc.

• In this lecture we investigate how to evaluate these
functions

1/22/2007 Lecture16 gac1 3

Polynomial Approximations
• Let us return to our main operations: addition, and

multiplication
• What different functions of a variable x can be

produced through addition and multiplication
alone?
– polynomials in x
– f(x) = c0 + c1x + c2x2 + … + cnxn

• This suggests a solution to our problem: find a
polynomial “close enough” to the function, and
then use mults and adds to evaluate it

1/22/2007 Lecture16 gac1 4

A Simple Evaluation Scheme
• Let’s use a 2nd order polynomial as an example

– f(x) = c0 + c1x + c2x2

– how can we evaluate this polynomial?

F

#

*

*

x

x2

x

* c1x

c2x2
+

+
c1x + c2x2

c0 + c1x + c2x2
#

1/22/2007 Lecture16 gac1 5

Horner’s Scheme
• Horner’s scheme is a method to reduce the number

of operations involved
– f(x) = c0 + c1x + c2x2 + … + cnxn

– re-write: f(x) = (…((cnx + cn-1)x + cn-2)x + … + c1)x + c0

• For our example

F

#

#

x

*

+

*
c2x + c1

c1x + c2x2+

c2x

c0 + c1x + c2x2

x

1/22/2007 Lecture16 gac1 6

Finding Polynomial Coefficients
• For any function f(x), we want to find the set of

polynomial coefficients so that the polynomial
function g(x) is “close enough” to f(x)

• What is “close enough”? Could be:
1. to within a worst case error ε, i.e. maxx |f(x) – g(x)| < ε
2. in the least-squares sense, i.e.

– w(x) is a “weight” function, which allows us to place
greater emphasis on errors some ranges of x

ε<−∫
x

dxxgxfxw 2))()()((

1/22/2007 Lecture16 gac1 7

Least-Squares Approximations
• We can construct

– where φi(x) is a known polynomial of degree i
• If we choose a set of orthogonal polynomials φi(x),

i.e.

• Then it is easy to calculate ai

∑
=

=
n

i
ii xaxg

0
)()(φ

0)()(, =≠∀ ∫ dxxxji
x

ji φφ

1/22/2007 Lecture16 gac1 8

Least-Squares Approximations
• If we define the inner product

• Then the coefficients minimizing the least-squares
error are

dxxgxfgf
x
∫>=<)()(,

><
><

=
ii

i
i

fa
φφ
φ

,
,

1/22/2007 Lecture16 gac1 9

Least-Squares Approximations
• Proof: We are trying to minimize

∫ ∑ ∑

∑∑ ∫∫ ∑ ∫

∫ ∑

= =

= ==

=

><+><−=

+−=

⎟
⎠

⎞
⎜
⎝

⎛
−=

x

n

i

n

i
iiiii

n

i

n

j x
jiji

x

n

i x
ii

x

n

i
ii

afaxf

dxxxaadxxxfaxf

dxxaxfE

0 0

22

0 00

2

2

0

,,2)(

)()()()(2)(

)()(

φφφ

φφφ

φ

1/22/2007 Lecture16 gac1 10

Least-Squares Approximations
• Proof (cont’d): Differentiate w.r.t. ai and set equal to zero

• This ease of derivation makes least-squares solutions
popular

><
><

=⇒

>=<+><−=
∂
∂

ii

i
i

iiii
i

fa

af
a
E

φφ
φ

φφφ

,
,

0,2,2

1/22/2007 Lecture16 gac1 11

Legendre Polynomials
• There are many sets of orthogonal polynomials with

different properties
• Two common ones are the Legendre and the

Chebyshev-I polynomials, both defined over [-1,1]
• Legendre polynomials have a weight w(x) = 1 and

can be defined by

i
i

i

ii x
dx
d

i
x)1(

!2
1)(2 −=φ

1/22/2007 Lecture16 gac1 12

Chebyshev Polynomials
• Chebyshev-I polynomials have weighting function

w(x) = (1-x2)-1/2 and can be defined by:

• Your choice of orthogonal polynomials should
depend on which parts of the function domain you
require to be highly accurate

∏
=

−

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

−=
i

k

i
i i

kxx
1

1

2
)12(cos2)(πφ

1/22/2007 Lecture16 gac1 13

Summary
• This lecture has covered

– Polynomial approximations
– The Horner’s scheme evaluation method
– Least squares approximation
– Legendre and Chebyshev-I orthogonal

polynomials

• In the next lecture, we will discuss floorplanning.

• The work by my ex-Ph.D. student Dr. Nalin Sidahao was used extensively to prepare this
lecture.

1/22/2007 Lecture16 gac1 14

Suggested Problems
• What is the least-squares error when fitting the

function f(x) = sin(π(x+1)/4) over [-1,1] using a
polynomial of 3rd order constructed as a weighted
sum of Legendre polynomials?

• Derive a formula for the number of multipliers
required using Horner’s scheme for polynomial
evaluation

• The critical path of the Horner’s scheme evaluation
can be reduced, possibly at the cost of more
operations, by different approaches. Can you
derive one such scheme?

1/22/2007 Lecture17 gac1 1

Perspectives I
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture (part one of two) covers
– Abstract design representations
– Word-length optimization
– Number representations

1/22/2007 Lecture17 gac1 2

Levels of Abstraction in Design
• Most of our examples have used a C-like

imperative language as the original design
specification

Full-Custom VLSI Design

Gate-Level Design

Register-Transfer Level VHDL

Behavioural VHDL

?

increasing
abstraction

increasing
productivity

increasingly
technology-
specific

1/22/2007 Lecture17 gac1 3

Why [not?] C
• One of the main candidates for “?” on the previous

slides is C
• Advantage: There are lots of C programmers, and

even more C code
• Disadvantage: C was designed for a single

processor
– no concept of parallelism, so we would need to

automatically detect all parallelism
– sometimes C is not a natural representation – we have

had to sequentialize an algorithm, only to have to re-
parallelize it

1/22/2007 Lecture17 gac1 4

Why [not?] C
• One compromise is to extend C

– Celoxica (http://www.celoxica.com) has a product for
synthesis from “C with extensions”

– You can add explicit parallelism with the “par” keyword
• Some aspects of C are particularly troublesome for

automatic analysis and efficient hardware
generation
– Synthesis of code containing pointers has only recently

been addressed (c. 2000)
(http://akebono.stanford.edu/users/nanni/research/sys)

– For this reason, pointerless Java has been sometimes
suggested as an alternative

1/22/2007 Lecture17 gac1 5

Simulink
• I believe a more promising approach is to

target specific problem domains
– Simulink is widely used in Control and DSP, so

use it as a specification format in these domains
– We have developed a tool for synthesis from Simulink

(http://cas.ee.ic.ac.uk/~gac1/)

– Recently technology manufacturers are getting
interested in this approach
(http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generator)

1/22/2007 Lecture17 gac1 6

Example in Simulink

• Already in DFG form!
• Modelling loops, etc. is

not as natural
• Ideal for data-intensive

applications
– DSP
– Communications

© Xilinx

1/22/2007 Lecture17 gac1 7

Matlab
• Probably the widest used tool for DSP algorithm

development
• Has complex control structures (while, etc) like C

– so comparatively hard to map efficiently
– also has implicit parallelism in matrix statements, e.g.

A = B + C for matrices: each element can be done in
parallel – in C, we would have to write as a loop

• A Matlab-based synthesis tool is in development at
Northwestern University
(http://www.ece.northwestern.edu/cpdc/Match/Match.html)

1/22/2007 Lecture17 gac1 8

Mathematical Specifications
• Possibly the “ultimate” future for synthesis of DSP

systems
• DSP algorithms are typically defined as a set of

equations
– a designer will then map this to a Matlab or Simulink

description
• We could aim higher – for direct synthesis from the

equations themselves
– plenty of scope for research here!

1/22/2007 Lecture17 gac1 9

Word-Length Optimization
• Simulink, Matlab, some C and mathematical

specifications share something not present in
hardware languages
– in numerical computations, often everything is a high-

precision floating point number
– for hardware, we want to trim the precision down the the

minimum (high speed, low area, low power)
• Word-length optimization problem:

– Choose a suitable word-length for each internal variable,
in order to minimize area (or power, or maximize speed)
subject to acceptable arithmetic error

1/22/2007 Lecture17 gac1 10

Word-Length Optimization
• This problem is one of my original research areas
• Our research has produced two tools (Synoptix, Right-Size)

– synthesizes a low-area implementation by selecting the
internal word-lengths appropriately

– input format is Simulink
– output format is structural VHDL
– http://cas.ee.ic.ac.uk/~gac1
– LTI systems, differentiable nonlinear systems

• Actively researching the use of word-length optimization for
power consumption minimization
– EPSRC funded research, Dr. Altaf Abdul Gaffar and Mr.

Jonathan Clarke.

1/22/2007 Lecture17 gac1 11

Logarithmic Representations
• Using standard two’s complement representation is

not always the most efficient
• In an algorithm with many additions but few

divisions and multiplies, standard representation
may suffice

• In an algorithm with few additions but many
multiplies and divisions, a logarithmic
representation may be better
– log(a/b) = log(a) – log(b); log(ab) = log(a) + log(b)

• We may still have to do conversion in and out of
log-form
– overheads could outweigh advantages

1/22/2007 Lecture17 gac1 12

Residue Number Systems
• Residue number systems also may be a possible

route to fast circuitry
• Choose n relatively prime numbers m1, m2, …, mn

• Represent x as a list (x mod m1, x mod m2, …, x
mod mn)
– we can represent up to m1m2…mn numbers uniquely like

this
– we can perform arithmetic on the list of numbers, e.g. for

n=2, m1=3, m2=5: 4 = (1,4), 3 = (0,3), 4*3 = (1*0,4*3) =
(0,12 mod 5) = (0, 2)

1/22/2007 Lecture17 gac1 13

Residue Number Systems
• Key point: We can do arithmetic on each of the list

elements in parallel
– if max(⎡log2 m1⎤, ⎡log2 m2 ⎤, …, ⎡log2 mn ⎤) <

⎡ log2(m1 m2…mn) ⎤, we can get speed advantages
– the delay of an arithmetic component depends on the

worst-case delay of each list element
– for our example, max(⎡log2 3⎤, ⎡log2 5 ⎤) = 3 < 4 = ⎡log2

15⎤
– however the area of the design may increase
– for our example, we need a 2-bit and a 3-bit adder rather

than a single 4-bit adder (roughly 25% larger)

1/22/2007 Lecture17 gac1 14

Number System Selection
• Ideally, a synthesis tool would select automatically which

portions of the circuit are best implemented using
– standard bit-parallel representation
– bit-serial representation (or something between)
– logarithmic representation
– residue representation
– fixed point
– floating point (IEEE standard – or something else?)

• Such a tool would have to take into account the overhead of
converting from one format to another

• This is an open research topic

1/22/2007 Lecture17 gac1 15

Summary
• This lecture (part one of two) has covered

– Abstract design representations
– Word-length optimization
– Number representations

• Next lecture will continue to examine some
future directions for architectural synthesis

1/22/2007 Lecture18 gac1 1

Perspectives II
• The final portion of the course covers

– Scheduling and retiming
– Resource sharing algorithms
– Function Approximation
– Floorplanning
– Perspectives for the future

• This lecture (part two of two) covers
– Function approximation
– Mathematical transformations
– Hardware / Software partitioning
– Memory synthesis
– Synthesis of Reconfigurable Architectures

1/22/2007 Lecture18 gac1 2

Function Approximation
• During this lecture course, we have often used

multiplication and addition as exemplary operations
• Sometimes we are interested in incorporating more

complex functions like sin(x) or ecos(x)

• We could simply extend our current approach, if we
have a library of designs for such functions
– however there are many different methods for

implementing a given function in hardware
– we could use a ROM as a lookup-table
– we could express the function using a polynomial

approximation, and then implement it using adds and
mults

1/22/2007 Lecture18 gac1 3

Function Approximation
– we could express the function using a rational

approximation, and then implement it using adds, mults,
and a divide

• Simple lookup table approach:

• Choose m and n to trade-off area/error/speed

ROM
n bits m bits

Size ∝ m2n

Speed ∝ 1/n
Error ∝ 2-m + a complex
dependence on nx sqrt(x)

1/22/2007 Lecture18 gac1 4

Function Approximation
• Polynomial approximation:

– Over [1,2], sqrt(x) ≈ 0.44 + 0.63x + 0.07x2

= 0.44 + x(0.63 + 0.07x)

*
0.07 x

+

0.63

*
x

+

0.44

• Many tradeoffs are possible
• how many bits used to represent

coefficient?
• how many bits to represent internal

variables?
• how many polynomial terms?
• what type of approximation?

• worst-case, or average case?

1/22/2007 Lecture18 gac1 5

Function Approximation
• Different solutions will have different area,

arithmetic error, power, and speed characteristics
• The challenge is to decide automatically when to

use which type of function approximation
– we have started to investigate this issue (Dr Nalin

Sidahao and Mr Gareth Morris)

1/22/2007 Lecture18 gac1 6

Mathematical Transformations
• There are certain mathematical transformations

which may be used to obtain different speed / area
tradeoffs

• For a simple example, ((a+b)+c)+d = (a+b) + (c+d)
– addition is associative

• Comparing the LHS and RHS as DFGs,
+

+
+

+

+ +

+

Can be scheduled
in 4 time units
using a single
adder

Can be
scheduled in
2 time units,
if we use two
adders

1/22/2007 Lecture18 gac1 7

Mathematical Transformations
• Another typical transformation is “strength

reduction”
– try to replace high-area / low-speed / high-power

operators by a combination of low-area / high-speed /
low-power operators

• For example 127x → 128x – x = (x<<7) – x
– “<<7” represents a left-shift by 7 bits
– shifting in hardware is cheap: just wires
– subtraction is cheap
– multiplication is expensive

1/22/2007 Lecture18 gac1 8

Mathematical Transformations
• The challenge is to decide, given constraints on

area, error, power and speed for the overall design,
which transformations to apply where

• There may be hidden pitfalls
– just because a transformation is valid for real numbers

doesn’t make it valid for binary representations
– in an 8-bit 2’s complement representation, numbers can

range from –128 to 127. (120+120)-150 may flag an
overflow, but (120-150)+120 won’t

1/22/2007 Lecture18 gac1 9

Hardware / Software Partitioning
• Large scale designs of embedded systems typically

have a hardware portion and a software portion
• The designer must decide which tasks are best

done in software, and which in hardware
– software can be slow, power-hungry, and cheap
– hardware can be fast, power-efficient, and expensive
– hardware can only be significantly faster if the application

can be parallelized
• Could this task be done automatically?

– Our research group has been addressing this problem for
configurable hardware based on Field-Programmable
Gate Arrays (FPGAs) [Dr. Theerayod Wiangtong]

1/22/2007 Lecture18 gac1 10

Memory Synthesis
• We have concentrated in the course on the area,

speed, and power associated with arithmetic units
• In many applications, memory accesses consume

significant power and slow down the application
• Memory itself can also consume a significant

proportion of silicon area
• Recently, our research group has been

investigating ways to use memory more efficiently
– what variables should be stored where in memory in

order to minimize power consumption? (Dr. Sambuddhi
Hettiaratchi)

– How to design customised parallel caches which match
the characteristics of the algorithm (Mr. Su-Shin Ang)

1/22/2007 Lecture18 gac1 11

Synthesis of Reconfigurable Architectures
• We have covered techniques to synthesise application

specific architectures.
– this architecture could then be implemented on an ASIC (expensive

for small volume!)
– or on an FPGA (expensive for large volume)

• FPGAs are cost effective for small volumes
– able to spread fixed costs over a large range of designs
– but how to decide the architecture of the FPGA itself?

• Fixed-function blocks: multipliers, RAMs
– limited flexibility, high performance, small footprint

• What proportion of multipliers, RAMs, fine-grain logic, and
other components are appropriate?
– Synthesise an FPGA architecture suitable for synthesising AS

architectures!
– New and exciting research field. (Mr. Alastair Smith).

1/22/2007 Lecture18 gac1 12

Summary
• This lecture (part two of two) has covered

– Function approximation
– Mathematical transformations
– Hardware / Software partitioning
– Memory synthesis
– Reconfigurable architectures

• Next lecture will summarize the entire
course, and allow you to focus on topics for
revision

