ASAP and ALAP scheduling

* We're now entering the final portion of the course
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
» This lecture covers
— The ASAP scheduling algorithm
— The ALAP scheduling algorithm and operation slack
— Introducing timing constraints into schedules
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ASAP Scheduling

* The simplest type of scheduling occurs when we
wish to optimize the overall latency of the
computation and do not care about the number of
resources required

* This can be achieved by simply starting each
operation in a CDFG as soon as its predecessors
have completed

» This strategy gives rise to the name ASAP for “As
Soon As Possible”
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ASAP Scheduling

» Let’s label each edge in the CDFG with the latency
of the node producing that edge

* Then scheduling under ASAP is equivalent to
finding the longest path between each operation
and the source node

» Since a CDFG is a DAG, we can use the DAG
longest path algorithm presented in Lecture 8

» Consider the original example from Lecture 1, and

assume that multiplication takes two cycles,
whereas addition and comparison take one cycle
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ASAP Scheduling

Edge weighted CDFG Scheduled start times

» Applying the DFG algorithm to finding the longest path
between the start and end nodes leads to the scheduled
start times on the right-hand diagram
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ALAP Scheduling

* The ASAP algorithm schedules each operation at the
earliest opportunity. Given an overall latency constraint, it is
equally possible to schedule operations at the latest
opportunity.

» This leads to the concept of As-Late-As-Possible (ALAP)
scheduling.

* ALAP scheduling can be performed by seeking the longest
path between each operation and the end or “sink” node.

* We will re-examine the example, under the same delay
assumptions, with an overall latency constraint of 6 clock
cycles.
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ALAP Scheduling

3 2
1 1
0

Edge-weighted CDFG

» The ALAP schedule start times can be derived by
subtracting the longest path time from the desired overall
latency constraint

Longest paths to sink node
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ALAP Scheduling

* Here are the ALAP start
4 times. You can see that
each operation starts at
5 the latest opportunity
possible to still meet 6
cycles overall
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Mobility

» Let's compare the ASAP and ALAP schedules:
0

» The highlighted nodes have equal ASAP and ALAP times.
For all others there is a difference of at least once cycle.
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Mobility

The difference between the ALAP and ASAP times
for an operation is called the operation mobility or
slack.

Mobility measures how free we are to move the
operation into different time-slots.

Operations with zero mobility are critical operations,
and together form the critical path, which
determines how fast our circuit will run.

More sophisticated scheduling algorithms will take
advantage of positive mobility to balance the
resource requirements over time.
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Types of Timing Constraint

» As well as an overall latency constraint, other types
of timing constraint are important

» Consider these examples [DeMicheli94]

— A circuit reads data from a bus, performs a computation,
and writes the result back onto the bus. The bus interface
specifies that the data must be written exactly three
cycles after the read

— A circuit has two independent streams of operations,
constrained to communicate simultaneously to external
circuits by providing two pieces of data at two interfaces.
The cycle in which the data are made available is
irrelevant, although the simultaneity of the data is
essential.
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Types of Timing Constraint

We will consider two types of constraint

—a minimum timing constraint I; between
operations v; and v;: S(v)) = S(v)) + I

—a maximum timing constraint u; between
operations v; and v; : S(v;) < S(v)) + u;

These constraints are sufficient to model the

situations on the previous slide, in addition to many

others. Solutions for previous slide:

— set both min and max of 3 cycles between read and write

— set both min and max of 0 cycles between the two writes
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Modelling Timing Constraints

* How can we incorporate these timing constraints
within our sequencing graph-based model, and
how do they affect the schedule?

» From the sequencing graph G(V,E), we construct
an edge-weighted constraint graph G.(V,E.),
where E c E¢:

— the edge weights for edges in E are the same as before
(i.e. the delay of the node producing that edge)

— we add extra edges to model the timing constraints
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Modelling Timing Constraints

e Minimum timing constraints can simply be modelled
by adding an extra edge (v, V) with weight I;

» By adding the curved edge
with weight 5, the
subtraction operation
cannot start for at least 5
cycles after the
multiplication starts
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Modelling Timing Constraints

* Maximum timing constraints can be modelled by
adding an extra edge (V;, V;) with weight -U;

* Now the multiplication cannot
occur before -5 cycles after

. the subtraction starts

o S(mult) > S(sub) -5, i.e.
S(sub) < S(mult) +5

» The subtraction cannot occur
later than five cycles after the
multiplication starts
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Scheduling with timing constraints

» ASAP / ALAP scheduling can still be performed on
constraint graphs through the longest path
technique, BUT...

— the graph may no longer be a DAG (e.g. on the previous
slide)
— we may need to use Liao-Wong to find the longest path
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Summary

 This lecture has covered
— The ASAP scheduling algorithm
— The ALAP scheduling algorithm and operation slack
— Introducing timing constraints into schedules

* Next lecture will look at list scheduling, an heuristic
method to find a short schedule given constraints
on the number of each type of resource available
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Suggested Problem More Suggested Problems

* Consider again the differential equation example « DeMicheli, Chapter 5, Problems 2 and 3 (note that
from Lecture 1, repeated again below. DeMicheli refers to a combined min and max
 Itis required that the constraint between the source vertex and an

subtraction operation operation as a “release time” constraint)
marked (o) begin no later
than 3 cycles after the
multiplication operation
marked (p)

« Compare the ALAP
schedules with and without
this constraint
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List Scheduling

The final portion of the course covers
— Scheduling and retiming

— Resource sharing algorithms

— Floorplanning

— Function Approximation

— Perspectives for the future

This lecture covers

— resource constrained scheduling and latency constrained
scheduling

— the resource-constrained list-scheduling algorithm
— the latency-constrained list-scheduling algorithm
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Resource Constrained Scheduling

The following problem is given the name “resource
constrained scheduling”:

— Given a library of resources, and a constraint on the
maximum number of each type of resource to be used in
the implementation, find a schedule of minimum latency

* This problem is NP-hard (proof in Lecture 6), so
generally heuristics are used to attack the problem

— we will also be looking at a way to find an optimum
solution next lecture
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Resource Constrained Scheduling

* Let R denote the set of resource types,
— e.g. R ={add, mult, ALU}

» Let the bound on the number of each resource type
re Rbea,

In list scheduling, we schedule operations by
considering each clock-cycle in turn

— U, is used to denote the set of operations of type r
whose predecessors have already completed by cycle t —
the candidate set

— T,, is used to denote the set of operations of type r
started, but not completed by cycle t
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Resource Constrained Algorithm

Algorithm RC_ListSchedule( G(V,E), R, a) {
set t=0;
repeat {
foreach re R{

determine U, ;
determine 7, ,
selectY c U,, s.t. [+ |7, ]<a;
set S(v) = tforall ve Y,

set t= +1,;
} until all nodes scheduled
return( S);

}
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Resource Constrained Algorithm

» At each clock cycle, the candidate set represents
those operations we could schedule

* From the candidate set, we select a subset Y,
which we do schedule

* The constraint on selection of Y is that we can
never have more than a, operations of type r
executing simultaneously

* Notice that as a, » « for all r € R, the list schedule
approaches an ASAP schedule
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Resource Constrained Algorithm

* Notice that the algorithm is not fully defined, as we
haven't said how to pick Y

* The most common way to pick Y is to prefer to
schedule the most urgent operations first

» Urgency is typically defined in terms of the
minimum latency ALAP schedule time — the lower
the ALAP time, the more urgent the operation is
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Resource Constrained Example

» Let’s re-visit our familiar differential equation
example

» Consider scheduling under
the resource set
R = {*, +/-, <}, where the
e delay of +/-and <is 1
~cycle, and the delay of * is
I 2 cycles

o

=

* We will perform a list-
schedule with a.=2, a,, =2,
a=1

1/22/2007 Lecture10 gacl 7

Resource Constrained Example

e t=0
—Up« = {ab,c,d}, Up . = {6}, Uy = &
—T0+=0, T4 =0, Ty =D
— For +/-, easy to select Y = {e}

— For *, we have a choice. ALAP times for a,b,c,d
are 0,0,1,3, respectively (see Lecture 9). So
most urgent are Y = {a,b}

— For <, there is nothing to schedule Y = &
—-S(@)=0,S(b)=0,S(e)=0
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Resource Constrained Example

et=1
- Ul,* = {C,d}, Ul,+/- = @, U1,< = {I}
~T,.={ab} T, =0, T,.= 0

—For+/-, Y =0

—For *, Y = O (all resources busy)
—For<, Y ={i}

-S@)=1
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Resource Constrained Example

e t=2
-U,.={cdf},U,, =0, U, =
—-T,.=0,T,,.=0,T,. =0
—For+/-,Y=0O
— For *, ALAP times for c,d,f are 1,3,2

respectively.Y = {c,f}

—For,Y=0O
-S()=2,5(f)=2
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Resource Constrained Example

« If we continue this process until the algorithm terminates
— we take once cycle longer than ASAP (but can use half

the number of multipliers)
0
0 0 2 4 0 0 0 0 0
2 4 @6 @1 2 2 @2 @1
%4 %4
N 6 \ :
7 6
ASAP times from Lect 9

List-scheduled times
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0

Latency Constrained Scheduling

* The dual problem is “latency constrained
scheduling”:

— Given a library of resources, and a constraint on the
maximum overall latency of the schedule, find a schedule
using the minimum number of resources of each type

* This problem is also NP-hard (the same proof
holds), so again heuristics are used to attack the
problem

» Let A denote the desired maximum latency
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Latency Constrained Algorithm

Algorithm LC_ListSchedule( G(V,E), R, L) {
perform ALAP( G(V,E), 1 );
seta,=1forall re R,
sett=0;
repeat {

foreach re R{
determine U, ,
determine 7,
determine slack s, = ALAP - tfor all ve U,
set Y, ={ve Vi s5,=0}
seta, = max(a,, | Y| +[7,]);
selectY,c U,, s.t. |Y;U Y]+ |T,] < a;
set S(v) = tforall ve Y, U Y,;

set t= t+1;
} until all nodes scheduled
return( S, a);
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Latency Constrained Algorithm

This algorithm works by constantly refining the
“maximum” number of resources it allows

— we start with one resource of each type

— this is changed if the desired latency is not achievable

For each cycle, we calculate the slack of the
candidate operations

— slack is the difference between the last cycle an
operation could be scheduled in and the current cycle

— if the slack of an operation is zero, it must clearly be
scheduled immediately, even if that means increasing the
number of resources allowed
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Latency Constrained Algorithm

» Such “forced” scheduled nodes are placed in set Y,

» It may also be possible to schedule additional nodes,
without increasing the resource requirements further. These
are placed in Y,, and selected on the basis of urgency, as
with the resource-constrained algorithm
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Latency Constrained Example

As an example, we will again consider the
differential equation CDFG

— The ASAP schedule gave a minimum schedule length of
6 cycles. It had up to 4 “*”, 1 “+” and 1 “<” operating in
parallel

— Let’s see whether latency constrained list scheduling can
do better than that

We will execute LC_ListSchedule( G(V,E), R, 6)

The ALAP times for this example have already
been determined in Lecture 9, and are:
—a:0,b:0,c:1,d:3,e:4,1.2,9:3,h:5,i:5,]:4,k: 5
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Latency Constrained Example

«t=0
—Up« = {ab,c,d}, Ug . ={e}, Uy =&
—T0+=0,Tp4. =0, Ty =D
-5,=0,5,=0,s.=1,54=3,5.,=4
—For* Y, ={ab}; for+/-, Y, =, for<, Y, =
—a. = 2; others unchanged
—For* Y,=0; for+/-,Y,={e}; for<, Y, =
—S(@)=0,S(b)=0,S(e)=0
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Latency Constrained Example

et=1
~Uy. = {cdh Uy, =@, Uy = {i}
-T,.={ab}, T,,. =0, T, .=
-5.=0,8,=2,5,=4
—For* Y, ={c} for+/-, Y, =F;for<, Y, =
—a. = 3; others unchanged
—For* Y, =; for+/-, Y, = & for <, Y, = {i}
-S(c)=1,S()=1
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Latency Constrained Example

e t=2
-U,.= {fd}, U, =0, U, =0
—T.={c}, T, =0, T, . =0
-5=0,54=1
—For* Y, ={f};for+/-, Y, =, for<, Y, =
— all resource constraints unchanged
—For* Y, ={d}; for +/-, Y, =G, for<, Y, =
-S(f)=2,S(d)=2
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Latency Constrained Example

« If we continue this process until the algorithm terminates

— schedule has the same latency as ASAP, but requires 3
rather than 4 multipliers

0 0
2 1
6

List-scheduled times ASAP times from Lect 9
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Area / Speed Tradeoffs

In general, if we allow more resources, the schedule may
have a shorter latency

Similarly, if we allow a longer latency, the schedule may
require fewer resources

This leads to the concept of an area / speed tradeoff

— one of a designers most important jobs is to explore this curve — and
architectural synthesis tools can help

l can’t use fewer than one mult
overall
latency //° can’t go faster than ASAP
}
achievable ©
designs # mults (for constant # other resources)
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Summary

» This lecture has covered
— resource constrained scheduling and latency constrained
scheduling
— the resource-constrained list-scheduling algorithm
— the latency-constrained list-scheduling algorithm

— area / speed tradeoffs

» Next lecture will look at optimum scheduling
methods, using Integer Linear Programming
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Suggested Problems

1. Re-visit the differential equation example. For two +/-
resources and one < resource, draw the complete Area /

Speed tradeoff curves achieved by applying

* resource-constrained list-scheduling

» latency-constrained list-scheduling

Are they the same? Account for any differences (**)

2. Write a program to perform one of the list-scheduling
algorithms and test it on some CDFGs of your own
invention (***)
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Optimum Scheduling

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
» This lecture covers
— Optimum scheduling: why ILP?
— Integer linear program model
— Example ILP and solution

1/22/2007
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Optimum Scheduling

» Last lecture we looked at an heuristic scheduling
technique: list scheduling

* We may also wish to know the optimum result for a
given scheduling problem

— optimum results are only achievable for small problems,
as resource-constrained scheduling is NP-hard

— if we design a heuristic, and it achieves near-optimal
schedules for small problems, we are usually more
confident it will do well for large problems

— optimum results form a “baseline” against which we can
compare heuristics
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Why ILP?

* Integer Linear Programming is useful to achieve
optimum results because
— it lets us formalize the problem

— it gives a structure to the problem: what is the objective
function, what are the constraints, how many are there,
what are their nature?

— we can use ILP solvers such as Ip_solve

(

) to solve

problems once they are in ILP format

1/22/2007
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Notation

» We will use the following notation, mainly carried
over from previous lectures
— S(v): the scheduled start time of node v
— d,: the delay (latency) of node v
— a,: the maximum number of resources of type r
— T(v): the type of node v
— R: the set of resource types
— A: the maximum overall latency

— ASAP, (ALAP,): the ASAP time (ALAP time) under
overall latency A

— X, binary decision variable (see next slide)
— ¢,: the cost of a resource of type r
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Binary Decision Variables

We will use a trick often used in ILP formulations: to
introduce binary decision variables

We will use x; (v € V, t € {ASAP,, ASAP +1, ...,
ALAP }, with x, = 1 iff node v is scheduled to start
attimet,i.e. X, =1< S(v) =t

These will allow us to formulate the resource
constraints as linear functions of x,

Note that if we are doing resource-constrained
scheduling, we may not know A. Since it is an
upper bound, we can use RC list scheduling to
obtain it.
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Ensuring a Unigue Start Time

« Qur first constraint needs to be to ensure that each
operation starts at only one time

ALAP,
wweV: ) x, =1
t=ASAP,

» Because X, are constrained to be binary variables,
this means that exactly one time-index is true for
each operation
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Specifying Data Dependencies

Of course we can't allow operations to start before
their predecessors in the CDFG have completed

ALAP, ALAP,.
YV V) eED D tox, = D tex, +d,
t=ASAP, t=ASAP,.

Each edge in the CDFG defines one of these
constraints

Each summation represents the start time of the
particular node (v on the LHS, v’ on the RHS)
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Specifying Resource Constraints

* No more than a, operations of type r can
simultaneously execute

vr e R,Vt €{0,..., 1},

Z Z th' aS ar

veV:T (v)=r  t'eft—d,+1,...t}~{ASAR, ..., ALAR,}
* The first summation is over all nodes of type r

* The second summation is over a time “window”
covering all start cycles t’ for which the operation
would still be executing by cycle t
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Resource-Constrained
Objective Function

e Under these constraints, the resource-constrained
scheduling problem can be solved by minimizing
the overall latency (we fix a,)

Latency-Constrained
Obijective Function

* Under the same constraints, the latency-
constrained scheduling problem can be solved by
minimizing the cost of the resources required (we

ALAPR, fix 1)
min : t-x In:
PR min:) c.a,
t=ASAR, R
* Here, v, represents the “end” or “sink” node in the
CDFG
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Example ILP Example ILP

» We will build an ILP for the differential equation solver as an
example

» We will formulate the latency-constrained problem for A = 6,
the minimum possible latency

* To refresh your memories, here are the ASAP and ALAP

times for L. =6 f60m Lecture 9
S:

» First, lets examine what variables we have:
{Xs0 Xa01 Xb01 Xc0s Xe1s Xao» Xa1s Xg2»
Xg3r Xeor Xerr Xoo1 Xogs Xoar Xy o, ng
Xg3' Xh2’ Xh3’ Xh4’ Xh5’ Xil’ Xi2’ Xi3’
Xig»r Xiss Xj4 X1 Xp6 )

» Operations with large mobility give rise to a large
number of variables
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Example ILP

» The first constraints are unique-start-time
constraints:

X¢r =1
Xso =1 Xg2 + X3 =1
X0 =1 Xy + Xpg + Xig + X5 =1
Xpo =1 Xip + Xip + Xig + Xy + X5 =1
X0 +Xg =1 X;s =1
Xgo + Xg1 + Xgqp + X453 =1 X,s =1
Xog + Xgg + Xgp + X3 + X4 =1 X, =1
1/22/2007 Lecturell gacl

13

N N D N O O o o o

Example ILP

The next constraints are dependency constraints:

X0 20X, +0

a0 —

“Xpo 20-X;o +0
X +1-X, 20-X,+0

cl —

“Xgo +1:Xgy +2-X4, +3:%X4320-%X,+0

“Xgo +1-Xgy +2- Xy, +3-Xy3 +4- X4, 20-X,, +0
“Xip 20:-X,0+2

“Xip 20X, +2

Kga T3 Xy3 20X +1-Xy +2

93 =

Kipg +3 Xz +4- Xy +5- X5 20-Xyg +1- Xy, +2- Xy +3- X453+ 2

1 X, +2: X, +3- X3 +4- X, +5- X5 20-X,g +1- X, +2-X,, +3- X3 +4- X, +1
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Example ILP

» Dependency constraints continued...

4-X;4 22X, +2

S X5 22Xy +3 X5 +2

6-X,622- X, +3 X3 +4- X, +5- X5 +1
6-X,6 21X, +2-X, +3- X3 +4- X, +5- X +1
S X5 24X, +1

6-X,6 25 X5 +1

1/22/2007 Lecturell gacl
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Example ILP
Resource constraints:

=<,t=1:x,<a, r=+/—t=0:x,<a,,_

=< t=2:x,<a | "=t/ot=lixgsa,
r=+/-t=2:x,+x,<a
=<’t _ 3. XI3 S a< y e2 h2 +/—
r:+/—,t:3ZXe3+Xh3§a+/_
=<,t=4:%,<a.
r:+/—,t=4ZXe4+Xh4+Xj4Saﬂ—
<’t 5'XI5_a< r:+/—,t:5:xh5+xk5£a+/—
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Example ILP

* More resource constraints:
F=*t=0:X+X,0+ X0+ Xg0 <

_ % _ .
F=*t=1:X+X,o + Xeo + Xeg + Xg0 + Xg1 < A

% _ .
r= ,t_2.xcl+xd1+xd2+xf2+xgzsa*

F=*1=3Xy, + Xz + X5+ Xy + X3 <A
* Objective function:

— let’s assume the cost of a mult is “2”, and that of an adder

and compara.tor is “1™:
min:2a.+a,, +a.

1/22/2007 Lecturell gacl
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Example ILP

» This (rather long!) example contains 29 binary
decision variables and 3 resource allocation
variables (total = 32) and 44 constraints

* For even this small example, the ILP model is quite
sizable
— ILP is only really practical for solving small problems
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Summary

» This lecture has covered
— Optimum scheduling: why ILP?
— Integer linear program model
— Example ILP and solution

* Next lecture will move off the subject of

scheduling, and start to consider algorithms

for resource sharing

1/22/2007 Lecturell gacl
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Suggested Problems

* Download a copy of Ip_solve from the website
given at the start of the lecture, and solve the ILP
example

— what is the minimum possible cost?

— how many adders, multipliers, and comparators does it
use?

— how does that compare with a latency-constrained list-
schedule?
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Affine Scheduling

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
* This lecture covers
— Scheduling nested loops: the affine approach
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Nested Loop Programs

» So far, we have only looked at scheduling “straight-line”
code

— Loops can be trivially scheduled by repeating the
schedule of the loop body.
— However, this is not always the most efficient way.

* We shall now consider nested loop programs:

fori, =1, tou;
for i, = 1,(i;) to u,(iq)

fori, = In(i_1 ..... in1) O uL(ig,..ying)
S,: first statement

S, kth statement
end for

end for
11222007 end for Lecturell gacl

Affine Nested Loop Programs

» To simplify notation, we will discuss scheduling statements,
rather than operations
— Equivalent if each statement contains a single operation.
» Our scheduling procedures so far would allocate a start time
S(u) to each statement u in the inner loop
— loops will run sequentially.
» We can do better if we make a (practical) restriction on the
functions I; and u;
— Letus denote i = (iy, iy, ..., iy)".
— We will assume |, and u; are affine, i.e.
L(i)=1Ti+19,

R 0
U (i) =ym+ud.
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The Unrolling “Solution”

» Before going further, it let us consider an easy
alternative:
— “unroll” all the loops, i.e. convert to straight-line code,
— Use one of our previous scheduling algorithms.

* Problem:
— Size of unrolled code exponential in n.

— As a result, optimal scheduling infeasible, heuristic
scheduling overwhelmed, massive FSM.
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Affine Schedules

The alternative is to define a scheduling function
S(i,v): the start time of statement v in iteration i.

lteration Space

» This is because the lower and upper iteration bounds
impose linear constraints on i:

If we impose a particular functional form on S(i,v), -1 o - 0 0 -1°

the problem becomes tractable 41 0 0 0 u.°

— Ensure S(i,v) is “affine-by-statement”: I 1 0 0 "
. , I — —

S(@i,v) =t,Ti + 0. A 1 0 0 20
The domain of the function S is Vx7s, where 95 = 7 _ b= u,
denotes the iteration space. : :

For an affine loop nest, 75 is the set of integral Loy b Ly 1 -1,

points inside Ai < b, known as a convex polytope. Uy —Up o —Upgy +1 u,’
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lteration Space Dependences

Geometrically:
— each constraint (a row in A and b) cuts n-dimensional

space with an (n — 1)-dimensional hyperplane.
Graphical example:

fori;=0to5
fori,=0to5-1i,
end for

end for
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» As before, the key issue in scheduling is to respect
data dependences (‘flow’ dependences).
— We shall now consider inter-iteration data dependences.

— Typically, these are carried by array accesses.

for i, =1 to 100
fori, =0 to 100

sli;Ili]1=s[iy-11[i,]1+c[i,I[i,1*x[i,]
end
end

— In this code, iteration (i4,i,) must execute after iteration
(i;-1,J) due to dependence carried by access to array “s”.

— In the unrolled CDFG, this would be a normal edge.
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Constant dependences

» Each of the dependences imposes a linear
constrainton t,
— For our example, there is only one statement, so we

shall drop the “v” subscript, and denote the delay of this
statement by d. Then:

. -
tT(illJth[lli ]+d:>(l Ot >d
2 2

— In this example, there is nothing in the constraint
(1 0)t =2 d that depends on i or j; this is a constant
dependence.

1/22/2007 Lecturell gacl 9

Constant dependences

» Constant dependences make life easier
— One linear constraint per statement

— Any feasible solution to the corresponding linear set of
constraints is a valid schedule!

— We could define an appropriate objective function,
depending on what we’re trying to optimize — overall
latency, etc.

— More complex techniques exist to deal with non-constant
(but still affine!) dependences

» P. Feautrier, “Some Efficient Solutions to the Affine Scheduling
Problem I: One-Dimensional Time”, Int. J. Parallel Programming
21(5), 1992, pp. 313-347.

1/22/2007 Lecturell gacl 10

Example Objective

* We have our constraints: what about an objective
function?

— Instance i of statement v completes by t,Ti +t,0 + d(v).

— This linear function of i will be maximized at one of the
vertices.

— For each vertex i, introduce a constraint
A2tTi+ 10+ d(v).
— Min latency objective is then just min: A.

1/22/2007 Lecturell gacl 11

Limitations

+ Affine scheduling sub-optimal, e.g. the code below, where n
is some constant known at synthesis time.

fori=0ton
forj=0toi
s =s + af(i,))
end for
end for

» The code is completely sequential. The best (non-affine)
schedule is S(i,j) = i(i +1)/2 + j, giving overall latency
n(n + 3)/2. The best affine schedule S(i,j) = ni + j, which is
much worse (approx twice as slow), at n(n +1).

» Can use multi-dimensional “time” < polynomial schedules.
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Summary

* This lecture has covered
— Affine nested loop programs
— Affine schedules
— Constant and affine dependences
— The vertex method
— Limitations of affine schedules.

» Next lecture will move off the subject of
scheduling, and start to consider algorithms
for resource sharing.

1/22/2007 Lecturell gacl 13

Suggested Problems

* Consider the code below.

» Determine the flow dependences, and construct a
linear program to schedule this code.
— Assume each statement takes a single cycle

fori=1to 10

for j =i to 2*i

XCiIliI=x0i-2100i 1= x[illi-1]
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Resource Sharing

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future

e This lecture covers
— Non-hierarchical CDFGs
— Hierarchical CDFGs

1/22/2007 Lecture12 gacl 1

Introduction

* We will consider some approaches for sharing
resources between operations

* Non-hierarchical and hierarchical CDFGs will be
considered separately
— problem has different complexity

» Remember that hierarchical CDFGs can be used to
represent the following (Lecture 1)
— conditionals
— loops
— function calls
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Resource Conflict Graph

The one fundamental restriction on sharing
resources:

— two operations executing simultaneously cannot be
executed on the same resource
This leads to the concept of “resource conflict”

Two operations are in resource conflict if they
overlap in execution time

A resource conflict graph uses the same node set
as the CDFG, but uses a set of undirected edges
such that: (Lecture 2)

— two operations are joined by an edge iff they are in
resource conflict
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Non-Hierarchical CDFGs

* For non-hierarchical CDFGs (i.e. those with just
one level of hierarchy), such a conflict graph is
simple

adder
conflict graph
: b
b:0 a.
d:2 ¢
i@

multiplier

non-hierarchical CDFG conflict graph
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Graph Structure

» Conflict graphs for non-hierarchical CDFGs are
interval graphs

* Recall from Lecture 5 that an interval graph is one
whose vertices can be put in one-to-one
correspondence with a set of intervals, such that
two vertices are connected by an edge iff the
corresponding intervals intersect

» Also recall from Lecture 5 that such graphs are
colourable easily in polynomial time using the left-
edge algorithm
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Solution via Left-Edge

» We can therefore find an optimum binding using left-edge, reproduced
below from Lecture 5

— use the scheduled start and end times as the left and right “edges”,
respectively
Left Edge( G(V,E) )
begin
sort nodes in ascending order of left edge - store in L
c=1;
while( not all vertices have been coloured ) {
r:=0;
while( there is a vertex in L with /,>r){
v, = first node in L with /,> r
rr=rg
label v, with colour ¢
L:=L\{v}}
c:=c+1;}
end 1/22/2007 Lecture12 gacl 6

Left-Edge: Example

» Taking the previous example:

a@® I I b
d@ I I IC
c=1 c=1 c=2

* So use one adder to do both a and d, but different
multipliers to do b and ¢

e Formally, Y(a) = (+,1); Y(b) = (*,2); Y(c)=(*,2); Y(d)=(+,1)

1/22/2007 Lecture12 gacl 7

Hierarchical CDFGs

» Consider a simple hierarchical CDFG with function
calls, performing the same function as the previous
example
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Hierarchical CDFGs

* How do we perform resource sharing?

— a naive approach would be to perform resource sharing
on each level of the hierarchy in turn

— for our example, this would lead to one multiplier and one
adder for each function: one more adder than we needed
for the non-hierarchical version

» We should try to share resources across the levels
of hierarchy
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Conditionals

» Conditionals help us share resources, as the two
branches (“if” and “else”) are never needed
simultaneously

a=b<c; .
if (a) then \ y
e:jg: b * b; c:l { d:1

d=c*c;

» Operations c and d are not in resource conflict,
although they have the same type and “overlap” in
time
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Multiple Function Calls

» Multiple calls to the same function complicate
matters, as operations can have several execution
times

a = fun(x); fun(p) {
b = fun(a); return p*p + 5; c.0,3
} a:.0
d:2,5
b:3
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Graph Properties

» Conditionals and multiple function calls change the
structure of the conflict graph
— it no longer must be an interval graph
— the left-edge algorithm is therefore no longer applicable

* We need an heuristic approach to colouring the
graph
— one such algorithm is given in Lecture 5

1/22/2007 Lecture12 gacl 12




Colouring Heuristic
* Here is the colouring heuristic from Lecture 5:

Colour_Graph( G(V,E) )

Hierarchical Example

* Here is a more complex scheduled CDFG

begin a = fun(x); 0.3
foreach ve V{ b = fun(a); fun(p) { a0 c.U,
c=1; if (y) thfn tl = p*p; ' _
while 3(v,V) € E: v has colour ¢ e::s: b*b; }retum tL+5; d:2.5
c=c+1; c=2*Db;

label vwith colour ¢} d = 3*b:

end : :

» We will apply it to an example with conditionals and f:6 g:6
multiple function calls
1/22/2007 Lecture12 gacl 13 1/22/2007 Lecture12 gacl 14
Hierarchical Example Example Datapath
* Remember f and g don’t conflict (if / else) ¢

multiplier conflict graph adder conflict graph

» Let’s colour the multiplier nodes in the order:
c,f,g,h

— c gets colour 1; f gets colour 1; g gets colour 1; h gets
colour 2

— we need two mults and an add
1/22/2007 Lecture12 gacl 15

from
control
unit
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Summary

« We have investigated resource sharing for
both
— Non-hierarchical CDFGs
— Hierarchical CDFGs

» Next lecture we will look at register sharing

1/22/2007 Lecture12 gacl 17

Suggested Problems

Perform a resource binding for the list-scheduled
differential equation example from Lecture 10 and
draw the completed datapath (*)

Design a controller for this datapath (*)

Discuss resource binding for conditionals within
conditionals (****)

Discuss a possible approach to resource binding
for loops (****)

De Micheli, Problems 6.11, No. 1 (conflict graphs
only) (*)
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Register Sharing

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future

» This lecture covers
— The register sharing problem
— Variable lifetime calculation
— Register conflict graphs
— Non-hierarchical register sharing
— Hierarchical register sharing: the loop problem

1/22/2007 Lecturel3 gacl

Register Sharing

We have discussed sharing of arithmetic resources
— registers also consume silicon area

Registers are required for each intermediate result
passed across a clock-cycle boundary

So far, we have used a distinct register for each
intermediate result

— but we could share registers if results are not needed at
the same time
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Lifetime Analysis

e Consider the code and scheduled CDFG below
— it has inputs x and y, and output f

z1 = 2*X;
z2 = 3*y;
z3 =2z1*z2;
z4 = X*X;

z5 =23 -2;

z2
76 = z2*74; 2 /24
f =25 - z6; 23\.
A ®s
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Lifetime Analysis

Let's analyse the lifetime for which each result is required
— z1is produced during cycle 1 and consumed during cycle 2

— z2is produced during cycle 1 and consumed both
during cycle 2 and cycle 3

— 23 is produced during cycle 3 and consumed during cycle 4
— z4 is produced during cycle 2 and consumed during cycle 3
— z5is produced during cycle 4 and consumed during cycle 5
— 26 is produced during cycle 4 and consumed during cycle 5
— fis produced during cycle 5 and consumed at some unknown time

A register must be allocated to each result from the period
AFTER production, to the period DURING the last
consumption

— this is the variable “lifetime”
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Register Conflict Graph

» Two results cannot share a register if their lifetimes
overlap

— we can thus create a register conflict graph just like the
resource conflict graph used in the previous lecture

cycle 0
cycle 1

cycle 2 @3

cycle 3

cycle 4 ‘ .

cycle 5

cycle 6 .
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Register Conflict Graph

» As with resource sharing, for the non-hierarchical
case the register conflict graph is an interval graph
— optimum solution through the left-edge algorithm

* Our example conflict graph can be coloured with
only two colours
— only two registers are required
— 21, 23, z4, z6 and f share a register
— z2 and z5 share a register

@
@—®)
@
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Example Datapath

* So what would the datapath be for that design?

7]l — )]
23 —

(from %g —
resources) f —
72 —) from
25 — control
to MUXs unit
and resources

from
control unit
* Note the multiplexers on the register inputs
— sharing resources leads to MUXs on resource inputs

— sharing registers leads to MUXs on register inputs
1/22/2007 Lecture13 gacl 7

Register sharing for loops

» As with resource sharing, things get more
complicated for hierarchical CDFGs
— we will not consider the general problem
— but we will examine the effect of loops to give you a
glimpse
» Consider the following sum-of-squares code and

scheduled CDFG 3n
0 / x[n]
total = 0; X total > 3n
Z

for n=0 to 9 0 1

z1 = xX[n]*x[n];
total = total + z1; total 3n+2
end 30 total
3n+3
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Register sharing for loops

* The result “total” is required to keep its value
BETWEEN loop iterations
— itis produced at cycles 3,6,9,...30 (excluding the

initialization) and consumed at cycles 2,5,8,...,29, and at
an unknown time after cycle 30

Register sharing for loops

Because of the “circular arc” wrap around effect
with some variables, the conflict graphs for
hierarchical CDFGs are not always interval graphs

Colouring such general graphs is NP-hard,
requiring the use of our colouring heuristic (or

cycle 3n+0 tota similar)
cycle 3n+1 L .—.
cycle 3n+2
tota
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Summary Suggested Problems

* We have investigated register sharing:
— Variable lifetime calculation
— Register conflict graphs
— Non-hierarchical register sharing
— Hierarchical register sharing: the loop problem

* Next lecture we will look at the module
selection problem

1/22/2007 Lecturel3 gacl 11

Perform a resource binding, and thus complete the partial
example datapath given this lecture (*)

To what extent can the registers be shared in the resource-
constrained list-scheduled example of Lecture 107? (*)

How important is register sharing? (think about it...) (***)

Consider what problems, if any, you may have extending
the framework discussed in this lecture to (****)

— function calls (with one call per function)
— function calls (with unlimited calls per function)
— conditionals

1/22/2007 Lecturel3 gacl 12




Module Selection

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation
— Perspectives for the future
» This lecture covers
— The module selection problem
— Module selection / scheduling / binding interaction
— An ILP formulation

1/22/2007 Lecturel4 gacl 1

Module Selection

» So far, we have considered only one resource type
capable of performing each operation, e.g.
— an adder/subtractor performs additions or subtractions
— a multiplier performs multiplications

* We could have different possibilities, e.g.

— either an adder/subtractor or an ALU could perform an
addition

— either a ripple-carry adder or a carry-lookahead adder
could perform an addition
* Module selection is the task of selecting an
appropriate type of resource to perform each
operations
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Interactions

* Ideally, we would like to perform module selection
before scheduling

— different resource types for a given operation may have
different latencies

— we need to know the latency (or at least an upper bound)
before we can schedule
* However, ideally we would like to combine module
selection and resource binding

— we don’t know which operations can share resources
until we know the resource type of each operation

— delaying module selection until binding will help us find a
low-area implementation
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Interactions

* For example, consider the code and CDFG below

z1 = x*2; /.\
fl=2z1<3; a b
f2 = x+2;

» Assume we have the following library:

» Adder: 1 area unit/ latency 1 cycle, Comparator: 1 area
unit / latency 1 cycle, ALU: 1.5 area units / latency 2
cycles, Multiplier: 2 area units / latency 2 cycles
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Interactions

We may wish to implement
— ain an adder, c in a comparator
—aand cin ALUs

The second option is only useful if the operations can share
a single ALU, otherwise it is a waste of area and latency

We don’t know if they can share a single ALU until after
scheduling

— we should perform module selection after scheduling
But we don’t know the latencies until module selection
— we should perform module selection before scheduling
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Interactions

» Since we perform scheduling before binding, there
is clearly a contradiction
— we want to do module selection early in the design flow
— we want to do module selection late in the design flow

* One solution is to perform scheduling, module
selection, and resource binding concurrently as a
single problem

— advantage: leads to high-quality solutions
— disadvantage: leads to a complex problem to solve
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ILP Formulation

It is relatively straightforward to extend our ILP
scheduling approach to consider the combined
problem

Rather than using variables x, to indicate the
scheduling of operation v at time t

— we assume we know an upper bound a, on the number of
resources required of typer e R

— use X, to indicate the scheduling of operation v at time t
oninstance i € {1,...,a,} of resource type r € R

— one variable x,, exists for allv € V, t € { ASAP,, ...,
ALAP, }, re T(v),ie{1,...,a}
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ILP Formulation

— T(v) is the type set of operation v. For our previous
example, T(*) =* T(<) = {ALU,<}; T(+) = {ALU, +/-}
* The module selection problem is thus choosing a
single member of T(v) for each v € V
— We will combine module selection, scheduling, and
binding, to achieve an optimum result
* |n addition to X, we will use a binary variable b;,
for each instance of each resource type

— b, = 1 < instance i of resource type r is used by at least
one operation

— as before, we will use c, to denote the cost of a resource
of type r
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ILP Formulation

Unlike the ILP scheduling in Lecture 11, a CDFG
node does not have a fixed delay

— it depends on which resource type implements the
operation

For this reason, we associate delays with resource
types: type r has delay d,

There is at least one resource type with minimum
delay d

The ASAP and ALAP scheduling is performed by
assuming each operation has its minimum delay

1/22/2007 Lecturel4 gacl 9

ILP Formulation

* We will also introduce one more symbol which will
make the formulation easier to follow:

» W represents the set of all times that any operation
could possibly start at:

W =( J{ASAP,....,ALAR}

veV
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Objective Function

* We are now in a position to formulate the “minimum
cost” objective function:

minimize : Zcribir
1

reR =

1/22/2007 Lecturel4 gacl 11

Binding Constraints

» Each operation must be mapped to a single
instance of a single resource type, operating at a
single time:

a, ALAPR,—d,+d i,

2 2 2 X =1
reT (v) i=1 t=ASAP,
* Note that an operation with ALAP time ALAP,,

cannot execute later than ALAP, —d, + d,;,, when
performed on a resource with delay d,

YveV,
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Resource Constraints

* No one instance of any resource type can execute
more than one operation at a time

— indeed, if the instance is unused, no operations may
execute on that instance

VteW,VreR,Viedl,..,a},

Z Z th‘ir < b

veVireT (v) t'eft,...t+d, ~1}n{ASAP, .., ALAP —d, +d i, }

 As before, the 2"d summation is over a “time window” during
which operations could overlap
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Ir

Dependencies

» As previously, we need to encode each
dependency in the CDFG

v(v',Vv) e E,

a, ALAPR,—d,+diny a, ALAPR,—d,+diny:

22 2txwz 2 D D (trd) Xy

reT(v) i=l  t=ASAP, reT(v') i=L  t=ASAP,

» The main difference with the previous formulation is
simply bringing the execution delay into the RHS
summations, as it depends on the resource type
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ILP Example

* To illustrate the method, we will complete an ILP for
the simple example earlier this lecture
—leta,=1,a,=1,a.=1,a,,=2
— (we can’t use more resource than operations of that type)
— note that a,, , is overkill, as we mentioned earlier
—letd.=2,d,=1,d.=1,d,,=2 .
—letc.=2,¢c,=1,c.=1,¢y,=1.5 N
— let A = 4 (not a tight constraint)
— then ASAP, =0, ASAP, =0, c
ASAP_ =2, ALAP, =3, ALAP, =1,
ALAP_ =3

b
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ILP Example

« SoW ={0,1,2,3}{0,1} U{2,3} = {0,1,2,3}
* Our objective function is then:
minimize :
2b . +1b, , +1b, _+1.5(0, 5y 0y 4u)
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ILP Example

» Binding constraints:
V=a. Xio1+ T Xa11+ T Xa21+ T Xaz1+ T Xa02a0
Xa,l,l,ALU + Xa,2,1,ALU + Xa,0,2,ALU + Xa,1,2,ALU + Xa,2,2,ALU
V=D Xyt X140 =1

v

C. X<t Xz1cT X o1au0 T X220 = 1

1/22/2007 Lecturel4 gacl 17

=1

ILP Example

* Resource constraints:
t=0,r=+i=1: X,,,, <b,
t=1Lr=+,i=1. X
t=2,r=+,i=1:
t=3,r=+,1=1:

a,11,+ S 1,+
Xa,2,1,+ S 1,+

Xa,3,1,+ S 1,+
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ILP Example

e More resource constraints:
t=0,r=*1=1:
t=1Lr=*1=1;
t=2,r=<,1=1:
t=3r=<1=1:

Xb,o’l’* + Xb,l,l,* S b ,*

Xb,l,l,* S b ,*

Xc,2,1,< S 1,<

Xc,3,1,< S 1<

1/22/2007 Lecturel4 gacl 19

ILP Example

* More resource constraints:

t=0,r=ALU,i=1: Xaonaw T Xa11a00 = b1,A|_U
t=0,r=ALU,i=2: X,05amu * X124 <D ay
t=1r=ALU,i=1: Xarraw T Xa21au T Xe21a0 S bl,ALU
t=1r=ALU,i=2: Xar2.a0 T Xa22a0 T Xe22a0 S b2,ALU
t=2,r=ALU,i=1: Xa21.a0 T Xe21.ALU < bl,ALU

t=2,r=ALU,1=2: Xa22.a0 TXe22aLU < bz,ALU
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ILP Example

» Dependency constraint:

Vi=b,v=c: 2X .. +3X 5.+

2Xc o1 a0 T 2%e02.a0 2 0+ 2)Xb,o,l,* +(1+ Z)Xb,l,l,*
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Summary

» This lecture has covered
— The module selection problem
— Module selection / scheduling / binding

interaction

— An ILP formulation

* Next lecture we will examine the retiming

problem.

1/22/2007
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Suggested Problems

* Download a copy of Ip_solve from the website
given at the start of Lecture 11, and solve the ILP
example
— what is the minimum possible cost? (*)

— how many adders, multipliers, comparators and ALUs
does it use? (*)

— how many variables and constraints are there? (*)

— how do you think the number of variables and constraints
vary with the size of the CDFG? (***)
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Retiming

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Floorplanning
— Function Approximation

Motivation

» Our concentration so far has been on synthesising “straight-
line code” or single loop iterations

* We have also briefly generalized this using CDFGs

» Often, algorithms will contain loop-carried dependencies,
e.g. this IIR filter:

a=0;b=0;c=0; An IR filter with transfer

— Perspectives for the future while( true ) { function
. read Xx;
e This lecture covers y=x+a; H(2) 1
. . . . . g '=0.1* 2*c: )= — —
- Ret|m|ng._ motivation and definitions 2= 3;1 b + 0.2*c; 1-01z2-027"3
— Delay-weighted DFGs ¢ =b;
— Retiming for clock period minimization a=ajb=bic=c
write y;
1/22/2007 Lecturel5 gacl } 1/22/2007 Lecturel5 gacl 2
Motivation Motivation

* There is an alternative way of writing this code:

d=0;e=0;f=0;9=0;
while( true ) {

read x; (We will soon see how you
y=x+d+g; can prove the equivalence)
d’ = 0.1%e;
e =vy;
f=e;
g’ = 0.2*f;
d=d;e=e;f=f;g=9
write y
}
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» Comparing the CDFGs of the two inner loops, we can see
that they may have different minimum latency.

/IT\e
D |c potential speedup e
min latency = min latency =
max{T+T,, T.}+T, max{T.,2T,+T,, T +T,+T

wh
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Retiming an operator

» This type of code transformation is called retiming,
and derives from the following simple observation:

* We can move a
register through an
operation without

... has identical behaviour to ... affecting the “outside
world” view of
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The initialization problem

* We must, however, give some thought to the
initialization of the system

« For example,  This is fine for forward

retiming, i.e. moving the

register from an input to

an output.

N _ * Backward retiming
... has identical behaviour to ... .
requires there to be an
appropriate set of inputs
that generate the desired
initially 1~ output
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~ initially 0

The delay-weighted DFG

» To be able to formally reason about retiming issues, we
need to represent the entire loop as a form of DFG,
including information on loop-carried dependencies.

» We will do this by an edge-weighted DFG, where each edge
weight represents the number of iterations delay on that
edge. We will call this a delay-weighted DFG.

* Note that when we have a loop-carried dependency, the
delay-weighted DFG will contain a cycle.
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Delay-Weighted DFG
0

a=0;b=0;c=0; 0

while( true ) { ®— @)
read X; 1
y=X+a;

b=Db’c=c;
write y;

}

e This is our original example and its delay-weighted DFG

» Noting that the only output of the lower adder has weight 1,
we can retime backwards across this adder, resulting in...

ap la
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Delay-Weighted DFG

d=0;e=0;f=0;9=0;
while( true ) {
read X;

d=d;e=e;f=f;g=09;
write y;

* ... which corresponds to our modified example
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Approaching the problem

* We can associate the nodes V with a retiming value
r: V — Z which denotes the number of clock cycles
that node has been moved “forwards in time”

* If we denote by w: E — Z the original weight, and
w,: E — Z the retimed weight, then
for all (u,v) € E, w(u,v) =w(u,v) + r(v) —r(u)

» A feasible retiming is one for which for all
(u,v) € E, w/(u,v) > 0 (since we can’t have a
negative number of registers)
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Retiming for Clock-Period Min

» There are several reasons why we may wish to retime,
including for speed and for minimization of registers.

* We will address retiming for clock-period minimization, i.e.
clock frequency maximization.

* The maximum clock frequency is determined by the worst-
case combinational delay between any two registers, or

from an input to a register, or from an register to an output.

» Let us denote by d(v) the combinational delay of node v,
and we will assume all nodes are combinational.

1/22/2007 Lecturel5 gacl 11

Retiming problem formulation

* We must therefore have the notion of a
combinational path, i.e. a path that does not pass
through any registers.

— w,(u,v) = 0 = combinational path.
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An ILP Solution

* We can modify the LP for
longest-path given in
Lecture 8 to:

* Minimize L s.t.

s, =S, +du)+w. (u,v)N forall(uv)eE (@)
s,+d(v)<LforallveV (2
Wr(u,v):W(u,v)+r(v)—r(u)20foral|(u,v)(g)E
r(vyeZforallveV @
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An ILP Solution

Here N is a “large-enough” negative number.
L corresponds to the longest combinational path, a

fact guaranteed by (2), which ensures it is at least

as large as the largest (s, + delay of node v).

(1) is simply an extension of Bellman’s equations. If
w,(u,v) =0, it is a direct implementation of
Bellman’s. w,(u,v) > 0, (1) is satisfied no matter
what (due to N being large, and w, being integer

(4)).

the feasibility constraint.
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Finally, (3) combines the definition of w,(u,v) with

14

Example

* Let'ssayd(v,) =d(v,) =1,d(v,) =
d(vs) =0, d(vs) = d(vg) = 2

If the retiming left the graph
unchanged, then r(v,)=r(v,)=r(v;)=
r(v4)=r(vs)=r(ve)=0

It should be easily verifiable that (1)-
(4) are satisfied in this case, with s ;
=0,s,=0,853=1,5,=2,55=0,
Ss=0,L=3

* The retimed example also corresponds to a feasible
solution, withs,; =0,s,,=1,5,53=2,5,=0,5,5=0,S,=0,
L = 2: an improvement!
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Summary

 This lecture has covered
— Retiming: motivation and definitions
— Delay-weighted DFGs
— Retiming for clock-period minimization

* The next lecture will investigate the
floorplanning problem.

1/22/2007 Lecturel5 gacl
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Suggested Problems

* Is the retiming shown in the example optimal?

* The edge-weighted DFG of a two-stage lattice filter
Is shown below: retime the DFG to improve the
clock rate given that the delay of a multiplier is 2ns,
the delay of an adder is 1ns, and the delay of an
I/O node is Ons.

(unlabelled edges have
zero weight)
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Floorplanning

» The final portion of the course covers
— Scheduling algorithms
— Resource sharing algorithms
— Module selection
— Retiming
— Floorplanning
— Function approximation
— Perspectives for the future
» This lecture covers
— The floorplanning problem
— Slicing and non-slicing floorplans and representations
— Heuristic and ILP solutions
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Motivation

* Inrecent years, we have moved to deep sub-
micron design.

» Wiring delays have started to compete with (and
sometimes overtake) logic delay.

— it is important to be able to estimate wiring delay early in
the design process.

* We need an early idea of geometrical layout on
silicon
— afloorplan.

» Floorplanning becomes part of architectural
synthesis.
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Slicing Floorplans

* Floorplans are typically categorised into
— slicing floorplans or non-slicing floorplans

* Slicing floorplan
— obtainable by repeated bisection of rectangular cells
— simplifies representation and optimization

A slicing floorplan A non-slicing floorplan
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Slicing Tree Representation

» Aslicing tree is a binary tree representation of a
slicing floorplan
— aleaf is a resource to be floorplanned

— other nodes indicate how to compose their children:
vertically, or horizontally. Vv
/ N\

7 H
AN

H H
/N,
3 N
6 H

/N
4 5
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Skewed Slicing Trees

» Unfortunately, slicing trees are not unique
representations of the floorplan.

Vv Vv
/ \ / \
7 H 7 H
/ N\ / N\
H H H V
VANV VANV
1 23/V\ H 36 H
6 H /\ 4/\5
S 12
4 5

Both slicing trees are valid representations
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Skewed Slicing Trees

» A skewed slicing tree has the following property
— no node and its right-child have the same type

» Every slicing floorplan has a unique skewed slicing
tree.

* How to represent the trees in a floorplanning
algorithm?

— We can represent it as a string, called a Polish
expression.
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Polish Expressions

» Polish expression for: X

V. . . /N
/ N\ Polish(Y)+Polish(Z)+X” vy 7
/ /H\ » Polish expression for leaf is
H Vi leaf value.
/SN /N
H 36 H * For tree on the left:
2 /N “712H3H645HVHV”
1 2 4 5

» A skewed slicing tree corresponds to a Polish
expression where

— no two consecutive operators (H/V) are of the same type.
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Floorplan Optimization

* We have a compact and unique representation of a
slicing floorplan. How to optimize for smallest area?

* A common approach:
— start with a random floorplan
— improve it based on certain well-defined “moves”

* What moves!?

— Swap two adjacent operands (leaf nodes) in the Polish
expression.

— Take a chain of consecutive operators, e.g. “HVHV”, and
complement it, e.g. “VHVH".

— Swap an adjacent operator and operand. (But make sure still a
skewed tree!)

* Moves from Prof. Hai Zhou
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Floorplan Optimization
3

12H3H 12V3H

/ 21V3H
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213VH

Area Computation

* How to tell whether a move improves area?
— Height( XYH ) = max( Height( X ), Height( Y ) )
— Width( XYH ) = Width( X ) + Width( Y )
— Height( XYV ) = Height( X ) + Height( Y)
— Width( XYV ) = max( Width( X ), Width( Y ))

Height(21V3H) = max( Height(21V), Height(3) )
= max( Height(2) + Height(1), Height(3) )

Width(21V3H) = Width(21V) + Width(3)
= max( Width(2), Width(1) ) + Width(3)
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Simulated Annealing

* In our example, not all moves improved area
— not good enough to just “pick the best move” each time
» Simulated annealing is often used
— pick a move at random.
— if it improves area, do it.
— if it doesn’t improve area, maybe do it.
* Probability of selecting a move that does not
improve area
— reduces with area penalty for move
— decreases (for a fixed area penalty) with iteration number
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An ILP Approach

* We can also take an ILP approach to the
floorplanning problem
— guaranteed optimal solutions

— slicing and non-slicing floorplans within a single
framework

— poor execution-time scaling
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An ILP Approach

« Resources cannot overlap

W X = X + W 1)
n W Xizx+w  (2)
Yizyt+h 3)
X h; Yzt h 4
X;
i i * We need to ensure that at
least one of (1)-(4) holds
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An ILP Approach

» Although each constraint is linear, “at least one of”
causes us a problem.
» A solution: all constraints below hold.

— P is a big enough positive number, e.g. max chip
dimension. For all (i,j) € R?, (1) to (4) must hold.

X+ P& + Pz %+ w; Q)
X, +P(1-9)+Przx+w, 2
Yy +PS;+P(L-n)2y;+h 3)
y +PQ-g) +PAL-nmyzy+h  (4)
G 1 €B
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Good Floorplanning

» Some floorplans are better than others
— place resources that communicate close to each other.
* Given a maximum wire-length Wj for each pair
(i,j)) € R? of connected resources, (5)-(9) mua’lt_hold.
i

X +0.5w; —Xx; —0.5w; sWijh (5) h { w,

—X; — 0.5 +X; +0.5w; <W," (6) :

y; +0.5h —y; —0.5h; <W;"  (7) % |hi
—y; —0.5h, +y; +0.5h; <W;" (8) e Y

Wi =W;" + Wy 9) 4
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Good Floorplanning

» Constraints (5) & (6) ensure that horizontal
wirelength is no more than W,;.
— (7) and (8) perform a similar function for vertical

wirelength.

» Constraint (9) expresses total wirelength in terms of
Manhattan distance.

/ v’ appropriate

for most

design rules

v linear
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Design Area

* We must ensure that the design fits in chip
dimensions X by Y.

— For all resources i € R, (10) and (11) must hold.

X; +W; < X (10)
y; +h <Y (12)
* If the chip aspect ratio is given, Y = kX (12).

— Objective is then min: X

 If aspect ratio is not given, we have min: XY
— problem: nonlinear objective
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Linearization

» Two standard approaches

— iterate: solve “min: X" with Y fixed, many times
for different values of Y.

— approximate:
XY= XY +(X-X)Y+(Y-Y")X for
X=X andY =Y.

— (or some combination of the two).

* More recently, convex (nonlinear) optimization
technigues have started to appear.
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ILP Approaches

» The approach has a (very) large execution time:
O(n2) integer variables.

— technigues have been proposed to break down into sub-
problemst.

— sub-problems can be stitched into suboptimal solutions.

Lsutanthavibul, Schragowitz, and Rosen, IEEE Trans CAD 10(6), 1991.
Smith, Constantinides, and Cheung, Proc. Field-Programmable Logic, 2005 (in
the context of FPGA design).
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Summary

» This lecture has introduced floorplanning
— motivation: deep-submicron era
— slicing vs non-slicing floorplans
— Polish expressions
— optimizing moves
— an ILP approach

» The next lecture will look at function approximation.
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Suggested Problems

Draw the floorplan represented by the following slicing tree:

Convert this tree into a skewed slicing tree.
Write the Polish expression for the skewed tree.

Identify one of the three moves proposed in this lecture that could be
applied to obtain an optimal area floorplan for the given resource
dimensions.

— Resource 1: Height = 2, Width = 2

— Resource 2: Height = 2, Width = 1

— Resource 3: Height = 1, Width =1

— Resource 4: Height = 1, Width = 1
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Beyond Mults and Adds

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future

» This lecture covers
— Polynomial approximations
— Evaluation methods
— Approximation methods
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Function Evaluation

Throughout much of the course, we have used
multiplication and addition as the key operations

There are typically pre-designed library blocks for
adder and multiplier resources

Not necessarily the case for more complex
functions: sin(x), cos(x), e, etc.

In this lecture we investigate how to evaluate these
functions
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Polynomial Approximations

» Let us return to our main operations: addition, and
multiplication

* What different functions of a variable x can be
produced through addition and multiplication
alone?
— polynomials in x
—f(X) =cy+ X + Cx2 + ...+ C X"

» This suggests a solution to our problem: find a
polynomial “close enough” to the function, and
then use mults and adds to evaluate it
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A Simple Evaluation Scheme

e Let's use a 2" order polynomial as an example
— f(x) =cy + cx + C,x2
— how can we evaluate this polynomial?

-
\\\ X2 ——

C,X? )

C X+ CX

2
Co + CX + CX
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Horner's Scheme

* Horner’'s scheme is a method to reduce the number
of operations involved

—f(X) =cy + ;X + C X% + ... + C X"
— re-write: f(x) = (...((CX + C )X + Cro)X + ... + €)X + Cy
« For our example ..

2. + C X2
Co + CiX + C,X CiX + CX
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Finding Polynomial Coefficients

» For any function f(x), we want to find the set of
polynomial coefficients so that the polynomial
function g(x) is “close enough” to f(x)

* What is “close enough”? Could be:
1. to within a worst case error ¢, i.e. max, [f(X) —g(X)| < ¢
2. in the least-squares sense, i.e.

JwOo(F () - g())*dx < &

— w(x) is a “weight” function, which allows us to place
greater emphasis on errors some ranges of x
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Least-Squares Approximations

* \We can construct

9 = Y8 (¥

— where ¢(x) is a known polynomial of degree i

* If we choose a set of orthogonal polynomials #(x),
le.

Vi [4(04(9dx=0

* Then it is easy to calculate a;
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Least-Squares Approximations

 If we define the inner product
< f,9>=[ F(x)g(x)dx

X

* Then the coefficients minimizing the least-squares
error are

<t 9>

a, =
<¢,¢ >
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Least-Squares Approximations

* Proof: We are trying to minimize
E =j[f(x)—iai¢i(x)j dx
(1 2(x)—2i a [ 1 (06,000x+ Y. Y aa, [ 4 ()4, ()dx

X i=0 j=0 X

:J.fz(x)—Zanai <f. 4 >+Zn:ai2 <d,d >
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Least-Squares Approximations

» Proof (cont’d): Differentiate w.r.t. a; and set equal to zero

E_ . f,¢>+2a <¢,4 >=0
oL:!
—a _<f.¢>

<¢.¢>

* This ease of derivation makes least-squares solutions
popular

1/22/2007 Lecturel6 gacl 10

Legendre Polynomials

» There are many sets of orthogonal polynomials with
different properties

* Two common ones are the Legendre and the
Chebyshev-I polynomials, both defined over [-1,1]

» Legendre polynomials have a weight w(x) = 1 and
can be defined by

1 d o,
¢|(X):ﬂ@ X" 1)
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Chebyshev Polynomials

* Chebyshev-I polynomials have weighting function
w(x) = (1-x2)V2 and can be defined by:

¢ (X) = 2“1ﬁ X — cos{ Qk;l)”}

* Your choice of orthogonal polynomials should
depend on which parts of the function domain you
require to be highly accurate
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Summary

e This lecture has covered
— Polynomial approximations
— The Horner’s scheme evaluation method
— Least squares approximation

— Legendre and Chebyshev-I orthogonal
polynomials

* In the next lecture, we will discuss floorplanning.

¢ The work by my ex-Ph.D. student Dr. Nalin Sidahao was used extensively to prepare this
lecture.
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Suggested Problems

* What is the least-squares error when fitting the
function f(x) = sin(n(x+1)/4) over [-1,1] using a
polynomial of 3" order constructed as a weighted
sum of Legendre polynomials?

» Derive a formula for the number of multipliers
required using Horner’'s scheme for polynomial
evaluation

* The critical path of the Horner’'s scheme evaluation

can be reduced, possibly at the cost of more
operations, by different approaches. Can you
derive one such scheme?
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Perspectives |

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future

» This lecture (part one of two) covers
— Abstract design representations
— Word-length optimization
— Number representations
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Levels of Abstraction in Design

* Most of our examples have used a C-like
imperative language as the original design
specification

increasing increasingly

abstraction technology-
specific

increasing

productivity
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Why [not?] C

* One of the main candidates for “?” on the previous
slidesis C

» Advantage: There are lots of C programmers, and
even more C code

» Disadvantage: C was designed for a single
processor

— no concept of parallelism, so we would need to
automatically detect all parallelism

— sometimes C is not a natural representation — we have
had to sequentialize an algorithm, only to have to re-
parallelize it

1/22/2007 Lecturel? gacl 3

Why [not?] C

* One compromise is to extend C

— Celoxica ( ) has a product for
synthesis from “C with extensions”

— You can add explicit parallelism with the “par” keyword

» Some aspects of C are particularly troublesome for
automatic analysis and efficient hardware
generation

— Synthesis of code containing pointers has only recently
been addressed (c. 2000)

( )

— For this reason, pointerless Java has been sometimes
suggested as an alternative
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Simulink

* | believe a more promising approach is to
target specific problem domains

— Simulink is widely used in Control and DSP, so
use it as a specification format in these domains

— We have developed a tool for synthesis from Simulink
(http://cas.ee.ic.ac.uk/~gacl/)

— Recently technology manufacturers are getting

interested in this approach
(http://www.xilinx.com/xInx/xil_prodcat_product.jsp?title=system_generator)
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Example in Simulink

L—@ * Already in DFG form!

* Modelling loops, etc. is
not as natural

» |deal for data-intensive
applications

1 = = - DSP
ST e i — Communications

nazsape  [CHeOl-mp 2
Conver

= © Xilinx
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Matlab

* Probably the widest used tool for DSP algorithm
development

» Has complex control structures (while, etc) like C

— so comparatively hard to map efficiently
— also has implicit parallelism in matrix statements, e.g.
A = B + C for matrices: each element can be done in
parallel — in C, we would have to write as a loop
* A Matlab-based synthesis tool is in development at
Northwestern University
(http://lwww.ece.northwestern.edu/cpdc/Match/Match.html)
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Mathematical Specifications

» Possibly the “ultimate” future for synthesis of DSP
systems

» DSP algorithms are typically defined as a set of
equations

— a designer will then map this to a Matlab or Simulink
description

* We could aim higher — for direct synthesis from the
equations themselves

— plenty of scope for research here!
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Word-Length Optimization

Simulink, Matlab, some C and mathematical
specifications share something not present in
hardware languages

— in numerical computations, often everything is a high-
precision floating point number

— for hardware, we want to trim the precision down the the
minimum (high speed, low area, low power)
Word-length optimization problem:

— Choose a suitable word-length for each internal variable,
in order to minimize area (or power, or maximize speed)
subject to acceptable arithmetic error
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Word-Length Optimization

This problem is one of my original research areas
Our research has produced two tools (Synoptix, Right-Size)

— synthesizes a low-area implementation by selecting the
internal word-lengths appropriately

— input format is Simulink

— output format is structural VHDL

— http://cas.ee.ic.ac.uk/~gacl

— LTI systems, differentiable nonlinear systems

Actively researching the use of word-length optimization for
power consumption minimization

— EPSRC funded research, Dr. Altaf Abdul Gaffar and Mr.

Jonathan Clarke.
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Logarithmic Representations

Using standard two’s complement representation is
not always the most efficient

In an algorithm with many additions but few
divisions and multiplies, standard representation
may suffice

In an algorithm with few additions but many
multiplies and divisions, a logarithmic
representation may be better

— log( a/b) =log(a) — log(b); log(ab) = log(a) + log(b)
We may still have to do conversion in and out of
log-form

— overheads could outweigh advantages
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Residue Number Systems

Residue number systems also may be a possible
route to fast circuitry

Choose n relatively prime numbers m;, m,, ..., m,
Represent x as a list (x mod m;, x mod m,, ..., X
mod m,)

— we can represent up to mym,...m, numbers uniquely like
this

— we can perform arithmetic on the list of numbers, e.g. for
n=2, m;=3, m,=5: 4 = (1,4), 3=(0,3), 4*3 = (1*0,4*3) =
(0,12 mod 5) = (0, 2)
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Residue Number Systems

» Key point: We can do arithmetic on each of the list
elements in parallel
— if max([log, m, 1, [log, m, 1, ..., [log, m, 1) <
[ log2(m; m,...m,) |, we can get speed advantages

— the delay of an arithmetic component depends on the
worst-case delay of each list element

— for our example, max([log, 31,[log, 5 1) =3 <4 = [log,
15]
— however the area of the design may increase

— for our example, we need a 2-bit and a 3-bit adder rather
than a single 4-bit adder (roughly 25% larger)
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Number System Selection

Ideally, a synthesis tool would select automatically which
portions of the circuit are best implemented using

— standard bit-parallel representation

bit-serial representation (or something between)

logarithmic representation

residue representation

fixed point

floating point (IEEE standard — or something else?)

Such a tool would have to take into account the overhead of
converting from one format to another

This is an open research topic
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Summary

 This lecture (part one of two) has covered
— Abstract design representations
— Word-length optimization
— Number representations

» Next lecture will continue to examine some
future directions for architectural synthesis
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Perspectives Il

» The final portion of the course covers
— Scheduling and retiming
— Resource sharing algorithms
— Function Approximation
— Floorplanning
— Perspectives for the future
» This lecture (part two of two) covers
— Function approximation
— Mathematical transformations
— Hardware / Software partitioning
— Memory synthesis
— Synthesis of Reconfigurable Architectures
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Function Approximation

* During this lecture course, we have often used
multiplication and addition as exemplary operations

* Sometimes we are interested in incorporating more
complex functions like sin(x) or ecos®)

* We could simply extend our current approach, if we
have a library of designs for such functions

— however there are many different methods for
implementing a given function in hardware

— we could use a ROM as a lookup-table

— we could express the function using a polynomial
approximation, and then implement it using adds and
mults
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Function Approximation

— we could express the function using a rational
approximation, and then implement it using adds, mults,
and a divide

» Simple lookup table approach:

Size oc m2"
m bits Speed o« 1/n
Error oc 2™ + a complex
dependence on n

n bits

sqrt(x)

* Choose m and n to trade-off area/error/speed
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Function Approximation

* Polynomial approximation:

— Over [1,2], sqrt(x) ~ 0.44 + 0.63x + 0.07x?
=0.44 + x( 0.63 + 0.07x)

» Many tradeoffs are possible

O'(z‘ /X * how many bits used to represent
0.63 coefficient?
* how many bits to represent internal
X variables?
0.44 -

* how many polynomial terms?
» what type of approximation?
* worst-case, or average case?
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Function Approximation

« Different solutions will have different area,
arithmetic error, power, and speed characteristics

» The challenge is to decide automatically when to
use which type of function approximation

— we have started to investigate this issue (Dr Nalin
Sidahao and Mr Gareth Morris)
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Mathematical Transformations

There are certain mathematical transformations
which may be used to obtain different speed / area
tradeoffs

For a simple example, ((a+b)+c)+d = (a+b) + (c+d)
— addition is associative
Comparing the LHS and RHS as DFGs,

Can be
Can be scheduled .
in 4 time units .\ ’ scheduled in

using a single 'thlme UnlttS,
adder if we use two

adders
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Mathematical Transformations

» Another typical transformation is “strength
reduction”

— try to replace high-area / low-speed / high-power
operators by a combination of low-area / high-speed /
low-power operators

* For example 127x — 128x — X = (X<<7) — X

— “<<7”" represents a left-shift by 7 bits

— shifting in hardware is cheap: just wires

— subtraction is cheap

— multiplication is expensive
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Mathematical Transformations

The challenge is to decide, given constraints on
area, error, power and speed for the overall design,
which transformations to apply where

There may be hidden pitfalls

— just because a transformation is valid for real numbers
doesn’t make it valid for binary representations

— in an 8-bit 2's complement representation, numbers can
range from —128 to 127. (120+120)-150 may flag an
overflow, but (120-150)+120 won't
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Hardware / Software Partitioning

» Large scale designs of embedded systems typically
have a hardware portion and a software portion

* The designer must decide which tasks are best
done in software, and which in hardware
— software can be slow, power-hungry, and cheap
— hardware can be fast, power-efficient, and expensive
— hardware can only be significantly faster if the application

can be parallelized
* Could this task be done automatically?

— Our research group has been addressing this problem for
configurable hardware based on Field-Programmable
Gate Arrays (FPGASs) [Dr. Theerayod Wiangtong]
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Memory Synthesis

We have concentrated in the course on the area,
speed, and power associated with arithmetic units

In many applications, memory accesses consume
significant power and slow down the application
Memory itself can also consume a significant
proportion of silicon area

Recently, our research group has been
investigating ways to use memory more efficiently

— what variables should be stored where in memory in
order to minimize power consumption? (Dr. Sambuddhi
Hettiaratchi)

— How to design customised parallel caches which match
the characteristics of the algorithm (Mr. Su-Shin Ang)
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Synthesis of Reconfigurable Architectures

» We have covered techniques to synthesise application
specific architectures.

— this architecture could then be implemented on an ASIC (expensive
for small volume!)

— oron an FPGA (expensive for large volume)
* FPGAs are cost effective for small volumes
— able to spread fixed costs over a large range of designs
— but how to decide the architecture of the FPGA itself?
» Fixed-function blocks: multipliers, RAMs
— limited flexibility, high performance, small footprint
* What proportion of multipliers, RAMs, fine-grain logic, and
other components are appropriate?

— Synthesise an FPGA architecture suitable for synthesising AS
architectures!

— New and exciting research field. (Mr. Alastair Smith).
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Summary

This lecture (part two of two) has covered
— Function approximation

— Mathematical transformations

— Hardware / Software partitioning

— Memory synthesis

— Reconfigurable architectures

Next lecture will summarize the entire
course, and allow you to focus on topics for
revision
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