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7. Latches and Flip-Flops

Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of
information. The main difference between latches and flip-flops is that for latches, their outputs are constantly
affected by their inputs as long as the enable signal is asserted. In other words, when they are enabled, their content
changes immediately when their inputs change. Flip-flops, on the other hand, have their content change only either
at the rising or falling edge of the enable signal. This enable signal is usually the controlling clock signal. After the
rising or falling edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major differences in these
flip-flop types are the number of inputs they have and how they change state. For each type, there are also different
variations that enhance their operations. In this chapter, we will look at the operations of the various latches and flip-
flops.

7.1 Bistable Element

The simplest sequential circuit or storage element is a bistable element, which is constructed with two inverters
connected sequentially in a loop as shown in Figure 1. It has no inputs and two outputs labeled Q and Q’. Since the
circuit has no inputs, we cannot change the values of Q and Q’. However, Q will take on whatever value it happens
to be when the circuit is first powered up. Assume that Q = 0 when we switch on the power. Since Q is also the
input to the bottom inverter, Q’, therefore, is a 1. A 1 going to the input of the top inverter will produce a 0 at the
output Q, which is what we started off with. Similarly, if we start the circuit with Q = 1, we will get Q’ = 0, and
again we get a stable situation.

A bistable element has memory in the sense that it can remember the content (or state) of the circuit
indefinitely. Using the signal Q as the state variable to describe the state of the circuit, we can say that the circuit has
two stable states: Q = 0, and Q = 1; hence the name “bistable.”

An analog analysis of a bistable element, however, reveals that it has three equilibrium points and not two as
found from the digital analysis. Assuming again that Q = 1, and we plot the output voltage (Vout1) versus the input
voltage (Vin1) of the top inverter, we get the solid line in Figure 2. The dotted line shows the operation of the bottom
inverter where Vout2 and Vin2 are the output and input voltages respectively for that inverter.

Figure 2 shows that there are three intersection points, two of which corresponds to the two stable states of the
circuit where Q is either 0 or 1. The third intersection point labeled metastable, is at a voltage that is neither a logical
1 nor a logical 0 voltage. Nevertheless, if we can get the circuit to operate at this voltage, then it can stay at that
point indefinitely. Practically, however, we can never operate a circuit at precisely a certain voltage. A slight
deviation from the metastable point as cause by noise in the circuit or other stimulants will cause the circuit to go to
one of the two stable points. Once at the stable point, a slight deviation, however, will not cause the circuit to go
away from the stable point but rather back towards the stable point because of the feedback effect of the circuit.

An analogy of the metastable behavior is a ball on top of a symmetrical hill as depicted in Figure 3. The ball can
stay indefinitely in that precarious position as long as there is absolutely no movement whatsoever. With any slight
force, the ball will roll down to either of the two sides. Once at the bottom of the hill, the ball will stay there until an
external force is applied to it. The strength of this external force will cause the ball to do one of three things. If a
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Figure 1. Bistable element.
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Figure 2. Analog analysis of bistable element.
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small force is applied to the ball, it will go partly up the hill and then rolls back down to the same side. If a big
enough force is applied to it, it will go over the top and down the other side of the hill. We can also apply a force
that is just strong enough to push the ball to the top of the hill. Again at this precarious position, it can roll down
either side.

We will find that all latches and flip-flops have this metastable behavior. In order for the element to change
state, we need to apply a strong enough pulse satisfying a given minimum width requirement. Otherwise, the
element will either remain at the current state or go into the metastable state in which case unpredictable results can
occur.

7.2 SR Latch

The bistable element is able to remember or store one bit of information. However, because it does not have any
inputs, we cannot change the information bit that is stored in it. In order to change the information bit, we need to
add inputs to the circuit. The simplest way to add inputs is to replace the two inverters with two NAND gates as
shown in Figure 4(a). This circuit is called a SR latch. In addition to the two outputs Q and Q', there are two inputs S'
and R' for set and reset respectively. Following the convention, the prime in S and R denotes that these inputs are
active low. The SR latch can be in one of two states: a set state when Q = 1, or a reset state when Q = 0.

To make the SR latch go to the set state, we simply assert the S' input by setting it to 0. Remember that 0 NAND
anything gives a 1, hence Q = 1 and the latch is set. If R' is not asserted (R' = 1), then the output of the bottom NAND
gate will give a 0, and so Q' = 0. This situation is shown in Figure 4 (d) at time t0. If we de-assert S' so that S' = R' =
1, the latch will remain at the set state because Q', the second input to the top NAND gate, is 0 which will keep Q = 1
as shown at time t1. At time t2 we reset the latch by making R' = 0. Now, Q' goes to 1 and this will force Q to go to a
0. If we de-assert R' so that again we have S' = R' = 1, this time the latch will remain at the reset state as shown at
time t3. Notice the two times (at t1 and t3) when both S' and R' are de-asserted. At t1, Q is at a 1, whereas, at t3, Q is at
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Figure 3. Ball and hill analogy for metastable behavior.

Figure 4. SR latch:  (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing diagram.
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a 0. When both inputs are de-asserted, the SR latch maintains its previous state. Previous to t1, Q has the value 1, so
at t1, Q remains at a 1. Similarly, previous to t3, Q has the value 0, so at t3, Q remains at a 0.

If both S' and R' are asserted, then both Q and Q' are equal to 1 as shown at time t4. If one of the input signals is
de-asserted earlier than the other, the latch will end up in the state forced by the signal that was de-asserted later as
shown at time t5. At t5, R' is de-asserted first, so the latch goes into the normal set state with Q = 1 and Q' = 0.

A problem exists if both S' and R' are de-asserted at exactly the same time as shown at time t6. If both gates have
exactly the same delay then they will both output a 0 at exactly the same time. Feeding the zeros back to the gate
input will produce a 1, again at exactly the same time, which again will produce a 0, and so on and on. This
oscillating behavior, called the critical race, will continue forever. If the two gates do not have exactly the same
delay then the situation is similar to de-asserting one input before the other, and so the latch will go into one state or
the other. However, since we do not know which is the faster gate, therefore, we do not know which state the latch
will go into. Thus, the latch’s next state is undefined.

In order to avoid this indeterministic behavior, we must make sure that the two inputs are never de-asserted at
the same time. Note that both of them can be de-asserted, but just not at the same time. In practice, this is guaranteed
by not having both of them asserted. Another reason why we do not want both inputs to be asserted is that when they
are both asserted, Q is equal to Q', but we usually want Q to be the inverse of Q'.

Figure 5. SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol.
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Figure 6. SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing
diagram.

S

R

Q

Q'

E

R'

S '

(a)

Q

Q'

S

R
E

(c)

E S R Q Qnext Qnext'
0 × × 0 0 1
0 × × 1 1 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 × 0 1
1 1 0 × 1 0
1 1 1 × 1 1

(b)

S

R

Q

Q'

t1

Undef ined

Undef ined

t2

E

t0

(d)



Chapter 7 – Latches and Flip-Flops Page 4 of 18

From the above analysis, we obtain the truth table in Figure 4(b) for the NAND implementation of the SR latch.
Q is the current state or the current content of the latch and Qnext is the value to be updated in the next state. Figure
4(c) shows the logic symbol for the SR latch.

The SR latch can also be implemented using NOR gates as shown in Figure 5(a). The truth table for this
implementation is shown in Figure 5(b). From the truth table, we see that the main difference between this
implementation and the NAND implementation is that for the NOR implementation, the S and R inputs are active
high, so that setting S to 1 will set the latch and setting R to 1 will reset the latch. However, just like the NAND
implementation, the latch is set when Q = 1 and reset when Q = 0. The latch remembers its previous state when S = R
= 0. When S = R = 1, both Q and Q' are 0. The logic symbol for the SR latch using NOR implementation is shown in
Figure 5(c).

7.3 SR Latch with Enable

The SR latch is sensitive to its inputs all the time. It is sometimes useful to be able to disable the inputs. The SR
latch with enable (also known as a gated SR latch) accomplishes this by adding an enable input, E, to the original
implementation of the latch that allows the latch to be enabled or disabled. The circuit for the SR latch with enable
using NAND gates is shown in Figure 6(a), its truth table in Figure 6(b), and logic symbol in Figure 6(c). When E =
1, the circuit behaves like the normal NAND implementation of the SR latch except that the S and R inputs are active
high rather than low. When E = 0, the latch remains in its previous state regardless of the S and R inputs. In actual
circuits, the enable input can either be active high or low, and may be named ENABLE, CLK, or CONTROL. A typical
operation of the latch is shown in the timing diagram in Figure 6(d). Between t0 and t1, E = 0 so changing the S and R
inputs do not affect the output. Between t1 and t2, E = 1 and the trace is similar to the trace of Figure 4(d) except that
the input signals are inverted.

The SR latch with enable can also be implemented using NOR gates as shown Figure 7.

7.4 D Latch
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Figure 7. SR latch with enable: (a) circuit using NOR gates; (b) truth table.
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Figure 8. D latch: (a) circuit using NAND gates; (b) circuit using NOR gates; (c) truth table; (d) logic symbol.
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The disadvantage with the SR latch is that we need to ensure that the two inputs, S and R, are never de-asserted
at the same time. This situation is prevented in the D latch by adding an inverter between the original S and R inputs
and replacing them with just one input D (for data) as shown in Figure 8(a) and (b).

Notice that the placement of the inverter with respect to the Q output is such that the Q output value follows the
D input. This feature is useful because, whereas the SR latch is useful for setting or resetting a flag on a given
condition, the D latch is useful for simply storing a bit of information that is presented on a line. Figure 8(c) shows
the truth table for the D latch, and Figure 8(d) shows the graphic symbol.

7.5 D Latch with Enable

Just like the SR latch with an enable input, the D latch can also have an enable input as shown in Figure 9(a).
When the E input is asserted (E = 1), the Q output follows the D input. In this situation, the latch is said to be “open”
and the path from the input D to the output Q is “transparent”. Hence the circuit is often referred to as a transparent
latch. When E is de-asserted (E = 0), the latch is disabled or “closed”, and the Q output retains its last value
independent of the D input. A sample timing diagram for the operation of the D latch with enable is shown in Figure
9(d). Between t0 and t1, the latch is enabled with E = 1 so the output Q follows the input D. Between t1 and t2, the
latch is disabled, so Q remains stable even when D changes.

7.6 D Flip-Flop

Latches are often called level-sensitive because their output follows their inputs as long as they are enabled.
They are transparent during this entire time when the enable signal is asserted. There are situations when it is more
useful to have the output change only at the rising or falling edge of the enable signal. This enable signal is usually
the controlling clock signal. Thus, we can have all changes synchronized to the rising or falling edge of the clock.
An edge-triggered flip-flop achieves this by combining in series a pair of latches. Figure 10(a) shows a positive-
edge-triggered D flip-flop where two D latches are connected in series and a clock signal Clk is connected to the E

input of the latches, one directly, and one through an inverter. The first latch is called the master latch. The master
latch is enabled when Clk = 0 and follows the primary input D. When Clk is a 1, the master latch is disabled but the
second latch, called the slave latch, is enabled so that the output from the master latch is transferred to the slave
latch. The slave latch is enabled all the while that Clk = 1, but its content changes only at the beginning of the cycle,
that is, only at the rising edge of the signal because once Clk is 1, the master latch is disabled and so the input to the
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Figure 9. D latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing
diagram.
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slave latch will not change. The circuit of Figure 10(a) is called a positive edge-triggered flip-flop because the output
Q on the slave latch changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low,
then it is referred to as a negative edge-triggered flip-flop. The circuit of Figure 10(a) is also referred to as a master-
slave D flip-flop because of the two latches used in the circuit. Figure 10(b) and (c) show the truth table and the
logic symbol respectively. Figure 10(d) shows the timing diagram for the D flip-flop.
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Another way of constructing a positive-edge-triggered flip-flop is to use three interconnected SR latches rather
than a master and slave D latch with enable. The circuit is shown in Figure 11. The advantage of this circuit is that it
uses only 6 NAND gates (26 transistors) as opposed to 10 gates (46 transistors) for the master-slave D flip-flop of
Figure 10(a). The operation of the circuit is as follows. When E = 0, the outputs of gates 2 and 3 are high (0 NAND x
= 1). Thus n2 = n3 = 1, which maintains the output latch, comprising gates 5 and 6, in its current state. At the same
time n4 = D' since one input to gate 4 is n3 which is a 1 (1 NAND x = x'). Similarly, n1 = D. When E changes to 1, n2

will be equal to n1' = D', while n3 will be equal to D. So if D = 0, then n3 will be 0, thus asserting R' and resetting the
output latch Q to 0. On the other hand, if D = 1, then n2 will be 0, thus asserting S' and setting the output latch Q to 1.
Once E = 1, changing D will not change n2 or n3, so Q will remain stable during the remaining time that E is asserted.

Clk D Q Qnext Qnext'
0 × 0 0 1
0 × 1 1 0
1 × 0 0 1
1 × 1 1 0

0 × 0 1
1 × 1 0

(b)

Figure 10. Master-slave positive-edge-triggered D flip-flop: (a) circuit using D latches; (b) truth table; (c) logic
symbol; (d) timing diagram.
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Figure 12 compares the different operations between a latch and a flip-flop. In (a), we have a gated D latch, a
positive-edge-triggered D flip-flop and a negative-edge-triggered D flip-flop, all having the same D input and
controlled by the same clock signal. (b) shows a sample trace of the circuit’s operations. Notice that the gated D
latch Qa follows the D input as long as the clock is high. The positive-edge-triggered flip-flop Qb responds to the D

input only at the rising edge of the clock while the negative-edge-triggered flip-flop Qc responds to the D input only
at the falling edge of the clock.

7.7 D Flip-Flop with Enable

A commonly desired function in D flip-flops is the ability to hold the last value stored rather than load in a new
value at the clock edge. This is accomplished by adding an enable input called EN or CE (clock enable) through a
multiplexer as shown in Figure 13(a). When EN = 1, the primary D signal will pass to the D input of the flip-flop,
thus updating the content of the flip-flop. When EN = 0, the bottom AND gate is enabled and so the current content
of the flip-flop, Q, is passed back to the input, thus, keeping its current value. Notice that changes to the flip-flop
value occur only at the rising edge of the clock. The truth table and the logic symbol for the D flip-flop with enabled
is shown in (b) and (c) respectively.
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Figure 12. Comparison of a gated latch, a positive-edge-triggered flip-flop, and a negative-edge-triggered flip-
flop: (a) circuit; (b) timing diagram.
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Figure 13. D flip-flop with enable: (a) circuit; (b) truth table; (c) logic symbol.
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7.8 Asynchronus Inputs

Flip-flops, as we have seen so far, change states at the edge of a synchronizing clock signal. Many circuits
require the initialization of flip-flops to a known state independent of the clock signal. Sequential circuits that
change states whenever a change in input values occurs independent of the clock are referred to as asynchronous
sequential circuits. Synchronous sequential circuits, on the other hand, change states only at the edge of the clock
signal. Asynchronous inputs are usually available for both flip-flops and latches, and they are used to either set or
clear the storage element’s content independent of the clock.

Figure 14(a) shows a D latch with asynchronous PRESET' and CLEAR' inputs, and (b) is the logic symbol for it. (c)
is the circuit for the D edge-triggered flip-flop with asynchronous PRESET' and CLEAR' inputs, and (d) is the logic
symbol for it. When PRESET' is asserted (set to 0) the content of the storage element is set to a 1 immediately, and
when CLEAR' is asserted (set to 0) the content of the storage element is set to a 0 immediately.

7.9 Flip-Flop Types

There are basically four main types of flip-flops: SR, D, JK, and T. The major differences in these flip-flop
types are in the number of inputs they have and how they change state. Each type can have different variations such
as active high or low inputs, whether they change state at the rising or falling edge of the clock signal, and whether
they have asynchronous inputs or not. The flip-flops can be described fully and uniquely by its logic symbol,
characteristic table, characteristic equation, state diagram, or excitation table, and are summarized in Figure 15.
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Figure 14. Storage elements with asynchronous inputs: (a) D latch with preset and clear; (b) logic symbol for (a);
(c) D edge-triggered flip-flop with preset and clear; (d) logic symbol for (c).
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Name /
Symbol

Characteristic
(Truth) Table

State Diagram /
Characteristic Equations

Excitation Table
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Figure 15. Flip-flop types.



Chapter 7 – Latches and Flip-Flops Page 11 of 18

7.9.1 SR Flip-Flop

We can replace the D latches in the D flip-flop of Figure 10(a) with SR latches to get a master-slave SR flip-
flop shown in Figure 16. Like SR latches, SR flip-flops are useful in control applications where we want to be able
to set or reset the data bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of
the clock signal. Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted
simultaneously.

7.9.2 JK Flip-Flop

JK flip-flops are very similar to SR flip-flops. The J input is just like the S input in that when asserted, it sets the
flip-flop. Similarly, the K input is like the R input where it clears the flip-flop when asserted. The only difference is
when both inputs are asserted. For the SR flip-flop, the next state is undefined, whereas, for the JK flip-flop, the next
state is the inverse of the current state. In other words, the JK flip-flop toggles its state when both inputs are
asserted. The circuit, truth table and the logic symbol for the JK flip-flop is shown in Figure 17.

7.9.3 T Flip-Flop

The T flip-flop has one input in addition to the clock. T stands for toggle for the obvious reason. When T is
asserted (T = 1), the flip-flop state toggles back and forth, and when T is de-asserted, the flip-flop keeps its current
state. The T flip-flop can be constructed using a D flip-flop with the two outputs Q and Q' feedback to the D input
through a multiplexer that is controlled by the T input as shown in Figure 18.

S R Q Qnext Qnext'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 × ×
1 1 1 × ×

(b)

Figure 16. SR flip-flop: (a) circuit; (b) truth table; (c) logic symbol.
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Figure 17. JK flip-flop: (a) circuit; (b) truth table; (c) logic symbol.
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7.9.4 Logic Symbol

The logic or graphical symbol describes the flip-flop’s inputs and outputs, the names given to these signals, and
whether they are active high or low. All the flip-flops have Q and Q' as their outputs. All of them also have a CLK

input. The small triangle at the clock input indicates that the circuit is a flip-flop and so it is triggered by the edge of
the clock signal; if there is a circle in front, then it is the falling edge, otherwise, it is the rising edge of the clock

signal. Without the small triangle, the circuit is a latch. In addition, the flip-flops have one or two more inputs that
characterize the flip-flop and give it its name. Figure 19 shows several sample logic symbols for various memory
elements.

7.9.5 Characteristic Table

The characteristic table is just the truth table but usually written in a shorter format. For example, compare the
characteristic table for the JK flip-flop in Figure 20 with the truth table in Figure 17(b). The truth table, as we have
seen, simply lists all possible combinations of the input signals, the current state (or content) of the flip-flop, and the
next state that the flip-flop will go to at the next active edge of the clock signal. The characteristic table answers the
question of what is the next state when given the inputs and the current state, and is used in the analysis of sequential
circuits.

Q
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Clk

T

Clk

Q

Q'

(a)

T Q Qnext Qnext'
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

(b)

Q

Q'

T
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(c)

Figure 18. T flip-flop: (a) circuit; (b) truth table; (c) logic symbol.
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Figure 19. Various logic symbols: (a) Active low SR latch; (b) positive-edge-triggered active
high T flip-flop; (c) negative-edge-triggered T flip-flop; (d) positive-edge-triggered
D flip-flop with asynchronous active low preset and clear.

J K Qnext

0 0 Q
0 1 0
1 0 1
1 1 Q'

Figure 20. JK flip-flop characteristic table.
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7.9.6 Characteristic Equation

The characteristic equation is the functional Boolean equation that is derived from the characteristic table. This
equation formally describes the functional behavior of the flip-flop. Like the characteristic table, it specifies the flip-
flop’s next state as a function of its current state and inputs. For example, the characteristic equation for the JK flip-
flop can be derived from the truth table as follows:

Qnext = J'K'Q + JK'Q + JK'Q' + JKQ'
= K'Q(J'+J) + JQ'(K'+K)
= K'Q + JQ'

The characteristic equation can also be obtained from the truth table using the K-map method as follows for the
SR flip-flop:

0 1

0 1

1 1

0 0

0

1

S
0 1

4 5

1 01 1

0 0

x x

3 2

7 6

R Q

S

R ' Q

Thus, the characteristic equation for the SR flip-flop is

Qnext = S + R'Q.

7.9.7 State Diagram

A state diagram is a graph that shows the flip-flop’s operations in terms of how it transitions from one state to
another. The nodes are labeled with the states and the directed arcs are labeled with the input signals that cause the
transition to go from one state to the next. Figure 21 shows the state diagram for the SR flip-flop. For example, to go
from state Q = 0 to the state Q = 1, the two inputs S and R have to be 1 and 0 respectively. Similarly, if the current
state is Q = 0 and we want to remain in that state, then SR need to be 00 or 01.

Q = 0 Q = 1

S R = 0 1

S R = 1 0

SR=00 o r  10

SR=00 o r  01

Figure 21. State diagram for the SR flip-flop.

7.9.8 Excitation Table

The excitation table gives the value of the flip-flop’s inputs that are necessary to change the flip-flop’s current
state to the desired next state at the next active edge of the clock signal. The excitation table answers the question of
what should the inputs be when given the current state that the flip-flop is in and the next state that we want the flip-
flop to go to. This table is used in the synthesis of sequential circuits.
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Figure 22 shows the excitation table for the SR flip-flop. As can be seen, this table can be obtained directly
from the state diagram. For example, if the current state is Q = 0 and we want the next state to be Q = 1, then the two
inputs must be SR = 10.

7.10 VHDL for Latches and Flip-Flops

7.10.1 Implied Memory Element

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language
provides for signals to be interpreted as a memory element. In other words, memory element is declared depending
on how these signals are assigned. Consider the code in Figure 23.

The process assigns the default value of 1 to C and then if A is equal to B then it changes the value of C to a 0.
In this code, C will be assigned a value for all possible outcomes of the test A = B. With this construct, a
combinational circuit is produced.

If we simply remove the statement that assigns the default value to C, then we have a situation where no value
will be assigned to C if A is not equal to B. The key point here is that the VHDL semantics stipulate that in cases
where the code does not specify a value of a signal, the signal should retain its current value. In other words, the
signal must remember its current value, and in order to do so, a memory element is implied.

Q Qnext S R
0 0 0 ×
0 1 1 0
1 0 0 1
1 1 × 0

Figure 22. SR flip-flop excitation table.

ENTITY no_memory_element IS
PORT (A, B : IN STD_LOGIC;

C : OUT STD_LOGIC);
END no_memory_element;

ARCHITECTURE Behavior OF no_memory_element IS
BEGIN

PROCESS(A, B)
BEGIN

C <= '1'; -- assigns default value to C
IF A = B THEN

C <= '0';
END IF;

END PROCESS;
END Behavior;

Figure 23. Sample VHDL description of a combinational circuit.
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7.10.2 VHDL Code for a D Latch

Figure 24 shows the VHDL code for a D latch with enable. If Enable is 1 then Q follows D. However, if Enable
is not 1, the code does not specify what Q should be, therefore, Q retains its current value. This code produces a latch
and not a flip-flop because Q follows D as long as Enable is 1, and not only at the active edge of the signal. The
process sensitivity list includes both D and Enable because either one of these signals can cause a change in the value
of the Q output.

7.10.3 VHDL Code for a D Flip-Flop

Figure 25 shows the behavioral VHDL code for a positive-edge-triggered D flip-flop. The only difference here
is that Q follows D only at the rising edge of the clock, and it is specified here by the condition “Clock’EVENT AND
Clock = '1'.” The ’EVENT attribute refers to any changes in the qualifying clock signal. So when this happens and
the resulting clock value is a one, we have in effect, a condition for a positive or rising clock edge. Note also that the
process sensitivity list contains only the clock signal because it is the only signal that can cause a change in the Q

output.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_latch_with_enable IS
PORT(D, Enable : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END D_latch_with_enable;

ARCHITECTURE Behavior OF D_latch_with_enable IS
BEGIN

PROCESS(D, Enable)
BEGIN

IF Enable = '1' THEN
Q <= D;

END IF;
END PROCESS;

END Behavior;

Figure 24. VHDL code for a gated D latch.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN

PROCESS(Clock)
BEGIN

IF Clock’EVENT AND Clock = '1' THEN
Q <= D;

END IF;
END PROCESS;

END Behavior;

Figure 25. VHDL code for a positive-edge-triggered D flip-flop using an IF statement.
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Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement as shown in Figure
26. When execution reaches the WAIT statement, it stops until the condition in the statement is true before
proceeding. Note also that the process sensitivity list is omitted because the WAIT statement implies that the
sensitivity list contains only the clock signal.

Alternatively, we can write a structural VHDL description for the positive-edge-triggered D flip-flop as shown
in Figure 27. This VHDL code is based on the circuit for a positive-edge-triggered D flip-flop as given in Figure 11.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock = '0' -- negative edge triggered
Q <= D;

END PROCESS;
END Behavior;

Figure 26. VHDL code for a negative-edge-triggered D flip-flop using a WAIT statement.

-- define the behavioral operation of the 2-input NAND gate
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY NAND2 IS
PORT(I0, I1 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END NAND2;

ARCHITECTURE Behavioral_NAND2 OF NAND2 IS
BEGIN

O <= I1 NAND I2;
END Behavioral_NAND2;

-- define the behavioral operation of the 3-input NAND gate
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY NAND3 IS
PORT(I0, I1, I2 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END NAND3;

ARCHITECTURE Behavioral_NAND3 OF NAND3 IS
BEGIN

O <= NOT (I1 AND I2 AND I3);
END Behavioral_NAND3;

Figure 27. Structural VHDL code for a positive-edge-triggered D flip-flop.
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-- define the structural operation of the SR latch
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY SRlatch IS
PORT(SN, RN : IN STD_LOGIC;

Q, QN : OUT STD_LOGIC);
END SRlatch;

ARCHITECTURE Structural_SRlatch OF SRlatch IS
COMPONENT NAND2 PORT (I0, I1 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END COMPONENT;

BEGIN
U1: NAND2 PORT MAP (SN, QN, Q);
U2: NAND2 PORT MAP (Q, RN, QN);

END Structural_SRlatch;

-- define the structural operation of the positive edge triggered
-- D flip-flop
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY positive_edge_triggered_D_flipflop IS
PORT(D, Clock : IN STD_LOGIC;

Q, QN : OUT STD_LOGIC);
END positive_edge_triggered_D_flipflop;

ARCHITECTURE Structural OF positive_edge_triggered_D_flipflop IS
SIGNAL N1, N2, N3, N4 : STD_LOGIC;

COMPONENT SRlatch PORT (SN, RN : IN STD_LOGIC;
                          Q, QN  : OUT STD_LOGIC);

END COMPONENT;
COMPONENT NAND2 PORT (I0, I1 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END COMPONENT;
COMPONENT NAND3 PORT (I0, I1, I2 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END COMPONENT;

BEGIN
U1: SRlatch PORT MAP (N4, Clock, N1, N2); -- set latch
U2: SRlatch PORT MAP (N2, N3, Q, QN); -- output latch
U3: NAND3 PORT MAP (N2, Clock, N4, N3); -- reset latch
U4: NAND2 PORT MAP (N3, D, N4);

END Structural;

Figure 27 (continue). Structural VHDL code for a positive-edge-triggered D flip-flop.
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7.10.4 VHDL Code for a D Flip-Flop with Asynchronous Inputs

Figure shows the VHDL code for a positive-edge-triggered D flip-flop with asynchronous active low reset and
clear inputs. The two asynchronous inputs are checked for independently of the clock event. When either the Reset
or the Clear input is asserted, Q is set to a 1 or 0 respectively immediately. Otherwise Q follows D at the rising edge
of the clock.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
PORT(D, Clock, Reset, Clear : IN STD_LOGIC;

Q : OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE Behavior OF D_flipflop IS
BEGIN

PROCESS(Clock, Reset, Clear)
BEGIN

IF Reset = '0' THEN
Q <= '1';

ELSIF Clear = '0' THEN
Q <= '0';

ELSIF Clock’EVENT AND Clock = '1' THEN
Q <= D;

END IF;
END PROCESS;

END Behavior;

Figure 28. VHDL code for a D flip-flop with asynchronous inputs.


