
3

ISA Wars: Understanding the Relevance of ISA being RISC or CISC
to Performance, Power, and Energy on Modern Architectures

EMILY BLEM, JAIKRISHNAN MENON, THIRUVENGADAM VIJAYARAGHAVAN,
and KARTHIKEYAN SANKARALINGAM, University of Wisconsin - Madison

RISC versus CISC wars raged in the 1980s when chip area and processor design complexity were the primary
constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and
power are the primary design constraints and the computing landscape is significantly different: Growth in
tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86
(a CISC ISA). Furthermore, the traditionally low-power ARM ISA is entering the high-performance server
market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market.
Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming
important again, and we seek to answer this question through a detailed measurement-based study on real
hardware running real applications. We analyze measurements on seven platforms spanning three ISAs
(MIPS, ARM, and x86) over workloads spanning mobile, desktop, and server computing. Our methodical
investigation demonstrates the role of ISA in modern microprocessors’ performance and energy efficiency.
We find that ARM, MIPS, and x86 processors are simply engineering design points optimized for different
levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other.
The ISA being RISC or CISC seems irrelevant.

Categories and Subject Descriptors: C.0 [General]: Hardware/Software Interfaces, Instruction Set Design,
System Architectures

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Power, energy efficiency, technology scaling

ACM Reference Format:
Emily Blem, Jaikrishnan Menon, Thiruvengadam Vijayaraghavan, and Karthikeyan Sankaralingam. 2015.
ISA wars: Understanding the relevance of ISA being RISC or CISC to performance, power, and energy on
modern architectures. ACM Trans. Comput. Syst. 33, 1, Article 3 (March 2015), 34 pages.
DOI: http://dx.doi.org/10.1145/2699682

1. INTRODUCTION

The question of ISA design, and specifically RISC versus CISC ISA, was an important
concern in the 1980s and 1990s when chip area and processor design complexity were
the primary constraints [Patterson and Ditzel 1980; Colwell et al. 1985; Flynn et al.
1987; Bhandarkar and Clark 1991]. It is questionable if the debate was settled in
terms of technical issues. Regardless, both flourished commercially throughout the
1980s and 1990s. In the past decade, the ARM and MIPS ISAs (RISC ISAs) have

This work is supported by NSF grants CCF-0845751, CCF-0917238, and CNS-0917213, and the Cisco
Systems Distinguished Graduate Fellowship.
Authors’ addresses: E. Blem, Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043;
email: emilyblem@gmail.com; J. Menon, T. Vijayaraghavan, and K. Sankaralingam, Department of Com-
puter Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI 53706; emails:
jmenon86@gmail.com, {thiruven, karu}@cs.wisc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0734-2071/2015/03-ART3 $15.00

DOI: http://dx.doi.org/10.1145/2699682

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://dx.doi.org/10.1145/2699682
http://dx.doi.org/10.1145/2699682

3:2 E. Blem et al.

dominated mobile and low-power embedded computing domains and the x86 ISA (a
CISC ISA) has dominated desktops and servers.

Recent trends raise the question of the role of ISA and make a case for revisiting the
RISC versus CISC question. First, the computing landscape has quite radically changed
from when the previous studies were done. Rather than being exclusively desktops
and servers, today’s computing landscape is significantly shaped by smartphones and
tablets. Second, whereas area and chip design complexity were previously the primary
constraints, energy and power constraints now dominate. Third, from a commercial
standpoint, both ISAs are appearing in new markets: ARM-based servers for energy
efficiency and x86-based mobile and low-power devices for high performance. As a
recent example, the Quark line of x86-based designs are entering the traditionally RISC
microcontroller regime. Thus, the question of whether ISA plays a role in performance,
power, or energy efficiency is once again important.

Related Work. Early ISA studies are instructive but miss key changes in today’s
microprocessors and design constraints that have shifted the ISA’s effect. We review
previous comparisons in chronological order and observe that all prior comprehensive
ISA studies considering commercially implemented processors focused exclusively on
performance.

Bhandarkar and Clark compared the MIPS and VAX ISA by comparing the M/2000 to
the Digital VAX 8700 implementations [Bhandarkar and Clark 1991] and concluded:
“RISC as exemplified by MIPS provides a significant processor performance advan-
tage.” In another study in 1995, Bhandarkar compared the Pentium-Pro to the Alpha
21164 [Bhandarkar 1997], again focused exclusively on performance and concluded:
“the Pentium Pro processor achieves 80% to 90% of the performance of the Alpha
21164... It uses an aggressive out-of-order design to overcome the instruction set level
limitations of a CISC architecture. On floating-point intensive benchmarks, the Alpha
21164 does achieve over twice the performance of the Pentium Pro processor.” Con-
sensus had grown that RISC and CISC ISAs had fundamental differences that led to
performance gaps that required aggressive microarchitecture optimization for CISC
that only partially bridged the gap.

Isen et al. [2009] compared the performance of Power5+ to Intel Woodcrest con-
sidering SPEC benchmarks and concluded that x86 matches the POWER ISA. The
consensus was that “with aggressive microarchitectural techniques for ILP, CISC and
RISC ISAs can be implemented to yield very similar performance.”

Many informal studies in recent years claim the x86’s “crufty” CISC ISA incurs many
power overheads and attribute the ARM processor’s power efficiency to the ISA.1 These
studies suggest that the microarchitecture optimizations from the past decades have
led to RISC and CISC cores with similar performance but that the power overheads of
CISC are intractable.

In light of the ISA studies from decades past, the significantly modified computing
landscape, and the seemingly vastly different power consumption of RISC implementa-
tions (ARM: 1–2W, MIPS: 1–4W) to CISC implementations (x86: 5–36W), we feel there
is need to revisit this debate with a rigorous methodology. Specifically, considering the
multipronged importance of the metrics of power, energy, and performance, we need to
compare RISC to CISC on those three metrics. Macro-op cracking and decades of re-
search in high-performance microarchitecture techniques and compiler optimizations
seemingly help overcome x86’s performance and code-effectiveness bottlenecks, but

1ARM On Ubuntu 12.04 LTS Battling Intel x86 (http://www.phoronix.com/scan.php?page=article&item=
ubuntu_1204_armfeb&num=1). The ARM vs x86 Wars Have Begun: In-Depth Power Analysis of Atom,
Krait & Cortex A15 (http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/).

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://www.phoronix.com/scan.php?page=articleamp;item=ubuntu1204armfebamp;num=1
http://www.phoronix.com/scan.php?page=articleamp;item=ubuntu1204armfebamp;num=1
http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/

ISA Wars 3:3

Fig. 1. Summary of approach.

these approaches are not free. The crux of our analysis is the following: After decades
of research to mitigate CISC performance overheads, do the new approaches introduce
fundamental energy inefficiencies?

Challenges. Any ISA study faces challenges in separating out the multiple imple-
mentation factors that are orthogonal to the ISA from the factors that are influenced
or driven by the ISA. ISA-independent factors include chip process technology node,
device optimization (high-performance, low-power, or low-standby power transistors),
memory bandwidth, I/O device effects, operating system, compiler, and workloads exe-
cuted. These issues are exacerbated when considering energy measurements/analysis,
since chips implementing an ISA sit on boards and separating out chip energy from
board energy presents additional challenges. Furthermore, some microarchitecture
features may be required by the ISA, whereas others may be dictated by performance
and application domain targets that are ISA-independent.

To separate out the implementation and ISA effects, we consider multiple chips
for each ISA with similar microarchitectures, use established technology models to
separate out the technology impact, use the same operating system and compiler
front-end on all chips, and construct workloads that do not rely significantly on the
operating system. Figure 1 presents an overview of our approach: the seven platforms,
26 workloads, and set of measures collected for each workload on each platform. We
analyzed one MIPS implementation (Loongson), three ARM implementations (Cortex-
A8, Cortex-A9, and Cortex-A15), and three x86 implementations (Atom, Bobcat, and
Sandybridge i7). These implementations span diverse ISAs and, within each ISA, span
diverse microarchitectures.

We present an exhaustive and rigorous analysis using workloads that span smart-
phone, desktop, and server applications. In our study, we are primarily interested in
whether and, if so, how the ISA being RISC or CISC impacts performance and power.
We also discuss infrastructure and system challenges, missteps, and software/hardware
bugs we encountered. Limitations are addressed in Section 3. Since there are many
ways to analyze the raw data, we have released all data at www.cs.wisc.edu/vertical/
isa-power-struggles.

Key Findings. The main findings from our study are:

(1) Large performance gaps exist between implementations, although average cycle
count gaps are predominately ≤3×.

(2) Instruction count and mix are ISA-independent to first order.
(3) Performance differences are generated by ISA-independent microarchitecture dif-

ferences.
(4) The energy consumption is again ISA-independent.
(5) ISA differences have implementation implications, but modern microarchitecture

techniques render them moot; one ISA is not fundamentally more efficient.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://www.cs.wisc.edu/vertical/isa-power-struggles
http://www.cs.wisc.edu/vertical/isa-power-struggles

3:4 E. Blem et al.

(6) MIPS, ARM, and x86 implementations are simply design points optimized for dif-
ferent performance levels.

Implications. Our findings confirm known conventional (or suspected) wisdom and
add value by quantification. Our results imply that microarchitectural effects dominate
performance, power, and energy impacts. The overall implication of this work is that,
although ISA is relevant to power and performance by virtue of support for various spe-
cializations (virtualization, accelerators, floating point arithmetic, etc.), the ISA being
RISC or CISC is largely irrelevant for today’s mature microprocessor design world.

From a broader perspective, our study also points to the role of the ISA for future
microprocessors, both for architects and the related fields of systems, compilers, and
application development.

Relation to Previous Work. In our previous work [Blem et al. 2013], we analyzed
measurements on four platforms—Cortex-A8 (ARM), Cortex-A9 (ARM), Atom (x86),
and Sandybridge i7 (x86)—and concluded that ISA being RISC or CISC is irrelevant
to performance, power, and energy. In this work, we extend our analysis to three
new platforms: Cortex-A15 (ARM), Bobcat (x86), and Loongson2F (MIPS). Through
these new platforms, we add an additional ISA (MIPS), an x86 microarchitecture
from a non-Intel vendor (AMD’s Bobcat), and one of the highest performance ARM
implementations (Cortex-A15). Through detailed analysis of our measurement on all
seven platforms, we conclude that our main finding still holds true.

Article Organization. Section 2 describes a framework we develop to understand
the ISA’s impacts on performance, power, and energy. Section 3 describes our overall
infrastructure and rationale for the platforms for this study and our limitations,
Section 4 discusses our methodology, and Section 5 presents the analysis of our data.
Section 6 presents the system and infrastructure challenges faced, and Section 7
concludes the article.

2. FRAMING KEY IMPACTS OF THE ISA

In this section, we present an intellectual framework in which to examine the impact
of the ISA—assuming a von Neumann model—on performance, power, and energy.
We consider the three key textbook ISA features that are central to the RISC/CISC
debate: format, operations, and operands. We do not consider other textbook features,
data types and control because they are orthogonal to RISC/CISC design issues, and
RISC/CISC approaches are similar. Table I presents the three key ISA features in three
columns and their general RISC and CISC characteristics in the first two rows. We then
discuss contrasts for each feature and how the choice of RISC or CISC potentially and
historically introduced significant tradeoffs in performance and power. In the fourth
row, we discuss how modern refinements have led to similarities, thus marginalizing
the effect of RISC or CISC on performance and power. Finally, the last row raises
empirical questions focused on each feature to quantify or validate this convergence.
Overall, our approach is to understand all performance and power differences by using
measured metrics to quantify the root cause of differences and whether or not ISA
differences contribute. The remainder of this article is centered around these empirical
questions framed by the intuition presented as the convergence trends.

3. INFRASTRUCTURE

We now describe our infrastructure and tools. The key take-away is that we pick seven
platforms, doing our best to keep them on equal footing, pick representative workloads,
and use rigorous methodology and tools for measurement. Readers can skip ahead to
Section 4 if uninterested in the details.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:5

Table I. Summary of RISC and CISC Trends

Format Operations Operands

R
IS

C

◦ Fixed-length instructions ◦ Simple, single-function
operations

◦ Operands: registers, imm

◦ Relatively simple encoding ◦ Single cycle ◦ Few addressing modes
◦ ARM: 4B, THUMB (2B,

optional)
◦ ARM: 16 GPRs

◦ MIPS: 4B ◦ MIPS: 32 GPRs

C
IS

C

◦ Variable-length instructions ◦ Complex, multicycle
instructions

◦ Operands: memory, registers,
imm

◦ Common insts
shorter/simpler

◦ Transcendentals ◦ Many addressing modes

◦ Special insts longer/complex ◦ Encryption ◦ x86: 8 32b and 6 16b registers
◦ x86: from 1B to 16B long ◦ String manipulation

H
is

to
ri

ca
l

C
on

tr
as

ts ◦ CISC decode latency
prevents pipelining

◦ Even without μcode in CISC,
pipelining hard

◦ CISC decoder complexity
higher

◦ CISC decoders slower/more
area

◦ CISC latency may be longer
than compiler’s RISC
equivalent

◦ CISC has more per inst work,
longer cycles

◦ Code density: RISC < CISC ◦ Static code size: RISC >

CISC

C
on

ve
rg

en
ce

T
re

n
ds ◦ μ-op cache minimizes

decoding overheads
◦ CISC insts split into

RISC-like micro-ops ⇒
optimizations eliminated
inefficiency

◦ x86 decode optimized for
common insts

◦ x86 decode optimized for
common insts

◦ Modern compilers pick
mostly RISC insts ⇒ μ-op
counts similar for MIPS,
ARM and x86

◦ CISC insts split into
RISC-like micro-ops ⇒ μ-op
latencies similar across ISAs

◦ I-cache minimizes code
density impact

◦ Number of data cache
accesses similar

E
m

pi
ri

ca
l

Q
u

es
ti

on
s

◦ How much variance in x86
inst length?

◦ Are macro-op counts
similar?

◦ Number of data accesses
similar?

Low variance ⇒ common
insts optimized

Similar ⇒ RISC-like on
both

Similar ⇒ no data access
inefficiencies

◦ Are code densities similar
across ISAs?

◦ Are complex instructions
used by x86 ISA?

Similar density ⇒ No ISA
effect

Few complex ⇒ Compiler
picks RISC-like

◦ What are I-cache miss rates? ◦ Are μ-op counts similar?
Low ⇒ caches hide low
code densities

Similar ⇒ CISC split into
RISC-like μ-ops

3.1. Implementation Rationale and Challenges

Choosing implementations presents multiple challenges due to differences in technol-
ogy (technology node, frequency, high-performance/low-power transistors, etc.), ISA-
independent microarchitecture (L2-cache, memory controller, memory size, etc.), design
goals (performance, power, energy), and system effects (operating system, compiler,
etc.). Finally, it is unfair to compare platforms from vastly different timeframes.

We investigated a wide spectrum of platforms spanning Intel Haswell, Nehalem,
Sandybridge, AMD Bobcat, NVIDIA Tegra-2, NVIDIA Tegra-3, and Qualcomm

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:6 E. Blem et al.

Table II. Platform Summary

32/64b x86 ISA ARMv7 ISA MIPS
Sandybridge Bobcat Atom Cortex-A15 Cortex-A9 Cortex-A8 Loongson

Processor C2700 Zacate E-240 N450 MPCore OMAP4430 OMAP3530 STLS2F01
Cores 4 2 1 2 2 1 1
Frequency 3.4 GHz 1.5 GHz 1.66 GHz 1.66 GHz 1 GHz 0.6 GHz 0.8 GHz
Width 4-way 2-way 2-way 3-way 2-way 2-way 4-way
Issue OoO OoO In Order OoO OoO In Order OoO
L1D 32 KB 32 KB 24 KB 32 KB 32 KB 16 KB 64 KB
L1I 32 KB 32 KB 32 KB 32 KB 32 KB 16 KB 64 KB
L2 256 KB/core 512 KB/core 512 KB 1 MB 1 MB/chip 256 KB 512 KB
L3 8 MB/chip — — — — — —
Memory 16 GB 4 GB 1 GB 2 GB 1 GB 256 MB 1 GB
SIMD AVX SSE SSE NEON NEON NEON —
Area 216 mm2 — 66 mm2 — 70 mm2 60 mm2 —
Node 32 nm 40 nm 45 nm 32 nm 45 nm 65 nm 90 nm
Platform Desktop Dev Board Dev Board Dev Board Pandaboard Beagleboard Netbook
Products Desktop Netbook Netbook Galaxy S-4 Galaxy S-III iPhone 4, 3GS Lemote Yeelong

Lava Xolo Galaxy S-II Motorola Droid

Snapdragon. However, we did not find implementations that met all of our criteria:
same technology node across the different ISAs, identical or similar microarchitec-
ture, development board that supported necessary measurements, a well-supported
operating system, and similar I/O and memory subsystems. We ultimately picked the
Cortex-A8 (ARM), Cortex-A9 (ARM), Cortex-A15 (ARM), Atom (x86), Bobcat (x86),
Loongson (MIPS), and i7 (x86) Sandybridge processor. We choose A8, A9, Atom, and
Bobcat because they include processors with similar microarchitectural features like
issue-width, caches, and main-memory and are from similar technology nodes, as de-
scribed in Tables II and VIII. They are all relevant commercially, as shown by the
last row in Table II. For a high-performance x86 implementation, we use an Intel i7
Sandybridge processor; it is significantly more power-efficient than any 45nm offer-
ing, including Nehalem. Intel Haswell is implemented at 22nm, and the technology
advantages made it a less desirable candidate for our goal of studying architecture
and microarchitecture issues. For a high-performance ARM implementation, we use
the A15 processor; it is a significant upgrade to the A9 microarchitecture and aims
to maximize performance. We chose to include the Loongson processor as representa-
tive of a true RISC ISA (MIPS) implementation. Importantly, these choices provided
usable software platforms in terms of operating system, cross-compilation, and driver
support. Overall, our choice of platforms provides a reasonably equal footing, and we
perform detailed analysis to isolate out microarchitecture and technology effects. We
present system details of our platforms for context, although the focus of our work is
the processor core.

A key challenge in running real workloads was the relatively small memory (512MB)
on the Cortex-A8 Beagleboard. Although representative of the typical target (e.g.,
iPhone 4 has 512MB RAM), it presents a challenge for workloads like SPECCPU2006;
execution times are dominated by swapping and OS overheads, making the core irrel-
evant. Section 3.3 describes how we handled this. In the remainder of this section, we
discuss the platforms, applications, and tools for this study in detail.

3.2. Implementation Platforms

Hardware Platform. We consider three ARM, one MIPS, and three x86 ISA implemen-
tations as described in Table II.

Intent. Keep nonprocessor features as similar as possible.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:7

Table III. Benchmark Summary

Domain Benchmarks Notes
Mobile CoreMark Set to 4000 iterations
client WebKit Similar to BBench
Desktop SPECCPU2006 10 INT, 10 FP, test inputs
Server lighttpd Represents web-serving

CLucene Represents web-indexing
Database kernels Represents data-streaming and data-analytics

Operating System. Across all platforms except A15, we run the same stable Linux
2.6 LTS kernel with some minor board-specific patches to obtain accurate results when
using the performance counter subsystem. We run Linux 3.8 on A15 because we en-
countered many technical challenges while trying to backport performance counters
support to Linux 2.6.

Intent. Keep OS effects as similar as possible across platforms.

Compiler. Our toolchain is based on a validated gcc 4.4-based cross-compiler configu-
ration. We intentionally chose gcc so that we can use the same front-end to generate all
binaries. All target independent optimizations are enabled (O3) and machine-specific
tuning is disabled in order to maintain the same set of binaries for all platforms of
the same ISA. Disabling machine-specific tuning is justified since any improvement in
performance and/or energy due to machine-specific tuning is, by definition, a microar-
chitecture artifact and is not related to the ISA being RISC or CISC. All binaries are
32-bit since 64-bit ARM platforms are still under development. For ARM, we disable
THUMB instructions for a more RISC-like ISA. None of the benchmarks includes SIMD
code, and although we allow autovectorization, very few SIMD instructions are gen-
erated for either ARM or x86 architectures. As for Loongson, although its instruction
set supports SIMD instructions, they are not part of the MIPS III ISA. The gcc MIPS
compiler that we use does not generate any Loongson-specific instructions. Floating
point is done natively on the SSE units on x86 implementations, NEON units on ARM
implementations, and the floating-point unit on Loongson. Vendor compilers may pro-
duce better code for a platform, but we use gcc to eliminate compiler influence. As seen
in Table XV of Appendix I, static code size is within 8% and average instruction lengths
are within 4% using gcc and icc for SPEC INT, so we expect that compiler does not
make a significant difference.

Intent. Hold compiler effects constant across platforms.

3.3. Applications

Since all ISAs studied in this work are touted as candidates for mobile clients,
desktops, and servers, we consider a suite of workloads that span these. We use prior
workload studies to guide our choice, and, where appropriate, we pick equivalent
workloads that can run on our evaluation platforms. A detailed description follows and
is summarized in Table III. All workloads are single-threaded to ensure our single-core
focus (see Section 3.5). Next, we discuss each suite in turn.

Mobile Client. This category presented challenges because mobile client chipsets
typically include several accelerators and careful analysis is required to determine
the typical workload executed on the programmable general-purpose core. We used
CoreMark (www.coremark.org), widely used in industry white-papers, and two WebKit
regression tests informed by the BBench study [Gutierrez et al. 2011]. BBench, a
recently proposed smartphone benchmark suite, is a “web-page rendering benchmark
comprising 11 of the most popular sites on the internet today” [Gutierrez et al. 2011].

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

file:www.coremark.org

3:8 E. Blem et al.

Table IV. Infrastructure Limitations

Limitation Implications

C
or

es

Multicore effects: coherence, locking... Second-order for core design
No platform uniformity across ISAs Best effort
No platform diversity within ISAs Best effort
Design teams are different μarch effect, not ISA

D
om

ai
n Ultra-low-power microcontrollers Out of scope

Server style platforms See server benchmarks
Why SPEC on mobile platforms? Tracks emerging uses
Why not SPEC JBB or TPC-C? CloudSuite more relevant

T
oo

ls

Proprietary compilers are optimized gcc optimizations uniform
Arch. specific compiler tuning <10%
No direct decoder power measure Results show second-order
Power includes noncore factors 4%–17%
Performance counters may have errors Validated use (Table V)
Limited performance counters Only cycle and instruction counters on

Loongson
Simulations have errors Validated use (Table V)

S
ca

li
n

g Memory rate effects cycles nonlinearly Second-order
Vmin limit effects frequency scaling Second-order
ITRS scaling numbers are not exact Best effort; extant nodes

To avoid web-browser differences across the platforms, we use the cross-platform
WebKit with two of its built-in tests that mimic real-world HTML layout and per-
formance scenarios for our study.2 We did not run the WebKit tests on Loongson due
to the unavailability of a machine-optimized MIPS binary. Since we use optimized
binaries of this benchmark on other platforms, reporting WebKit numbers using an
unoptimized binary on Loongson would constitute an unfair comparison.

Desktop. We use the SPECCPU2006 suite (www.spec.org) as representative of
desktop workloads. SPECCPU2006 is a well understood standard desktop benchmark
that provides insights into core behavior. Due to the large memory footprint of the train
and reference inputs, we found that, for many benchmarks, the memory-constrained
Cortex-A8 ran of memory, and execution was dominated by system effects. Hence, we
report results using the test inputs, which fit in the Cortex-A8’s memory footprint for
10 of 12 INT and 10 of 17 FP benchmarks.

Server. We chose server workloads informed by the recently proposed CloudSuite
workloads [Ferdman et al. 2012]. Their study characterizes server/cloud workloads
into data analytics, data streaming, media streaming, software testing, web search,
and web serving. The actual software implementations they provide are targeted for
large memory-footprint machines, and their intent is to benchmark the entire system
and server cluster. This is unsuitable for our study since we want to isolate processor
effects. Hence, we pick implementations with small memory footprints and single-node
behavior. To represent data-streaming and data-analytics, we use three database
kernels commonly used in database evaluation work [Rao and Ross 2000; Kim et al.
2009] that capture the core computation in Bayes classification and datastore.3
To represent web search, we use CLucene (clucene.sourceforge.net), an efficient,

2Specifically coreLayout and DOMPerformance.
3CloudSuite uses Hadoop+Mahout plus additional software infrastructure, ultimately running Bayes clas-
sification and data store; we feel this kernel approach is better suited for our study while capturing the
domain’s essence.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

file:www.spec.org
file:clucene.sourceforge.net

ISA Wars 3:9

cross-platform indexing implementation similar to CloudSuite’s Nutch. To represent
web-serving (CloudSuite uses Apache), we use the lighttpd server (www.lighttpd.net),
which is designed for “security, speed, compliance, and flexibility.” We do not evaluate
the media-streaming CloudSuite benchmark because it primarily stresses the I/O
subsystem. CloudSuite’s Software Testing benchmark is a batch coarse-grained
parallel symbolic execution application; for our purposes, the SPEC suite’s Perl parser,
combinational optimization, and linear programming benchmarks are similar.

3.4. Tools

The four main tools we use in our work are described here, and Table V describes how
we use them.

Native execution time and microarchitectural events. We use wall-clock time and
performance-counter-based clock-cycle measurements to determine execution time
of programs. We also use performance counters to understand microarchitecture
influences on the execution time. Each of the processors has different counters
available, and we examined them to find comparable measures. Ultimately, three
counters explain much of the program behavior: branch misprediction rate, Level-1
data cache miss rate, and Level-1 instruction cache miss rate (all measured as misses
per kilo-instructions). We use the perf tool for performance counter measurement.

Power. For power measurements, we connect a Wattsup (www.wattsupmeters.com)
meter to the board/desktop/laptop power supply. This gives us system power. We run
the benchmark repeatedly to find consistent average power as explained in Table V.
We use a control run to determine the board power alone when the processor is halted
and subtract away this board power to determine chip power. Some recent power
studies [Esmaeilzadeh et al. 2011; Isci and Martonosi 2003; Bircher and John 2008]
accurately isolate the processor power alone by measuring the current supply line
of the processor. This is not possible for the SoC-based ARM development boards,
and hence we determine and then subtract out the board power. This methodology
allows us to eliminate the main memory and I/O power and examine only processor
power.4 On the Loongson netbook, we tweaked the software DVFS governor to put
the processor into low-power mode in order to compute the idle power. System power
was computed by removing the netbook battery and connecting its power supply to
wall socket via the WattsUp meter. To remove LCD power, we wait for the LCD to
enter standby state before taking power measurements. We validated our strategy for
the i7 system using the exposed energy counters (the only platform we consider that
includes isolated power measures). Across all three benchmark suites, our WattsUp
methodology compared to the processor energy counter reports ranged from 4% to 17%
less, averaging 12%. Our approach tends to underestimate core power, so our results
for power and energy are optimistic. We saw average power of 840mW, 1.1W, 2.4W,
21.3W, 4.5W, 5.5W, 2.7W for A8, A9, Atom, i7, Bobcat, A15, and Loongson, respectively,
and these fall within the typical vendor-reported power numbers.

Technology scaling and projections. Since the i7 processor and Cortex-A8 are based
on 32nm and 65nm technology nodes, respectively, we use technology node character-
istics from the 2007 ITRS tables to normalize to the 45nm technology node (A9 and
Atom are 45nm) in two results where we factor out technology; we do not account for
device type (LOP, HP, LSTP). We normalize Bobcat (40nm) to 45nm using the weighted
average of the 32nm and 45nm numbers. We normalize Loongson (90nm) to 45nm by
equating the slope from 90nm to 65nm to the slope that we see from 65nm to 45nm. For

4According to the WattsUp meter vendor, the meter’s wattage accuracy is within +/− 1.5%.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

file:www.lighttpd.net
file:www.wattsupmeters.com

3:10 E. Blem et al.

Table V. Methodology Summary

(a) Native Execution on Real Hardware
Measures Methodology
Execution time ◦ Approach: Use perf tool to sample cycle performance counters; sampling avoids

potential counter overflow. Run one benchmark at a time to make sure that
only a single core is exercised in the processors.

Cycle counts ◦ Analysis: 5–20 trials (dependent on variance and benchmark runtime); report
minimum from trials that complete normally.

◦ Validation: Compare against wall clock time.
Inst. count (ARM) ◦ Approach: Use perf tool to collect macro-ops from performance counters

◦ Analysis: At least three trials; report minimum from trials that complete
normally.

◦ Validation: ARM Performance counters within 10% of gem5 ARM simulation.
Table XIII elaborates on challenges.

Inst. count (MIPS) ◦ Approach: Use perf tool to collect macro-ops from performance counters
◦ Analysis: At least three trials; report minimum from trials that complete

normally.
◦ Validation: No validation performed.

Inst. count (x86) ◦ Approach: Use perf to collect macro-ops and micro-ops from performance
counters.

◦ Analysis: At least three trials; report minimum from trials that complete
normally.

◦ Validation: Counters within 2% of DynamoRIO trace count (macro-ops only).
Table XIII elaborates on challenges.

Inst. mix (Coarse) ◦ Approach: SIMD + FP + load/store performance counters. No mix data collected
on MIPS platform. Table XIII elaborates on challenges.

Inst. length (x86) ◦ Approach: Wrote Pin tool to find length of each instruction and keep running
average.

Microarch events ◦ Approach: Branch mispredictions, cache misses, and other uarch events
measured using perf performance counters. uarch events not collected on
MIPS platform. Table XIII elaborates on challenges.

◦ Analysis: At least three trials; additional if a particular counter varies by >5%.
Report minimum from normal trials.

Full system power ◦ Set-up: Use Wattsup meter connected to board, desktop or netbook (no network
connection, peripherals on separate supply, kernel DVFS disabled, cpuidle
support disabled, cores at peak frequency, single-user mode).

◦ Approach: Run benchmarks in loop to guarantee 3 minutes of samples (180
samples at maximum sampling rate).

◦ Analysis: If outliers occur, rerun experiment; present average power across run
without outliers.

Board power ◦ Set-up: Use Wattsup meter connected to board, desktop, or netbook (no network
connection, peripherals on separate supply, kernel DVFS disabled, cpuidle
support disabled, cores at peak frequency, single-user mode).

◦ Approach: Run with kernel power saving enabled; force to lowest frequency.
Issue halt; report power when it stabilizes.

◦ Analysis: Report minimum observed power.
Processor power ◦ Approach: Subtracting above two gives processor power.

◦ Validation: Compare core power against energy performance counters and/or
reported TDP and power draw.

(b) Emulated Execution
Measures Methodology
Inst. mix (Detailed) ◦ Approach (ARM): Use gem5 instruction trace and analyze using python script.

◦ Approach (MIPS): Not collected on MIPS platform.
◦ Approach (x86): Use DynamoRIO instruction trace and analyze using python

script.
◦ Validation: Compare against coarse mix from SIMD + FP + load/store

performance counters.
ILP ◦ Approach: Pin-based MICA tool that reports ILP with window size 32, 64, 128,

256.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:11

our 45nm projections, the A8’s power is scaled by 0.8×, i7’s by 1.3×, Bobcat’s by 1.1×,
A15’s by 1.3×, and Loongson’s by 0.6×. In some results, we scale frequency to 1GHz,
accounting for DVFS impact on voltage using the mappings disclosed for Intel SCC
[Baron 2010]. When frequency scaling, we assume that 20% of the i7’s power is static
and does not scale with frequency; all other cores are assumed to have negligible static
power. When frequency scaling, A8’s power is scaled by 1.2×, Atom’s by 0.8×, i7’s by
0.6×, Bobcat’s by 0.8×, A15’s by 0.8×, and Loongson’s by 1.2×. We acknowledge that
this scaling introduces some error to our technology-scaled power comparison, but we
feel it is a reasonable strategy and does not affect our primary findings (see Table IV).

Emulated instruction mix measurement. For the x86 ISA, we use DynamoRIO
[Bruening et al. 2003] to measure instruction mix. For the ARM ISA, we leverage the
gem5 [Binkert et al. 2011] simulator’s functional emulator to derive instruction mixes
(no ARM binary emulation available). Due to tool limitations, we could not gather any
instruction mix data for Loongson. Our server and mobile-client benchmarks use many
system calls that do not work in the gem5 functional mode. We do not present detailed
instruction-mix analysis for these, but instead present a high-level mix determined
from performance counters. We use the MICA tool to find the available ILP [Hoste and
Eeckhout 2007].

3.5. Limitations or Concerns

Our study’s limitations are classified into core diversity, domain, tool, and scaling
effects. The full list appears in Table IV, and details are discussed here. Through-
out our work, we focus on what we believe to be the first-order effects for perfor-
mance, power, and energy and feel our analysis and methodology is rigorous. Other
more detailed methods may exist, and we have made the data publicly available
at www.cs.wisc.edu/vertical/isa-power-struggles to allow interested readers to pursue
their own detailed analysis.

Cores. We considered seven platforms: three x86, three ARM, and one MIPS. A
perfect study would include platforms at several performance levels with matched
frequency, branch predictors, other microarchitectural features, and memory systems.
Furthermore, a pure RISC versus CISC study would use “true” RISC and CISC cores,
whereas ARM and x86’s ISA tweaks represent the current state of the art. Only Loong-
son may claim to implement a true RISC ISA. Our selections reflect the available and
well-supported implementations.

Domain. We picked a representative set of workloads that captures a significant
subset of modern workloads. We do not make broad domain-specific arguments since
that requires truly representative inputs and IO subsystem control for the mobile
and server domains. Our study focuses on single-core and thus intentionally avoids
multicore system issues (e.g., consistency models, coherence, virtualization, etc.).

Measurement and Tool Limitations. Our measurements are primarily on real hard-
ware and therefore include real-world errors. We execute multiple runs and take a
rigorous approach, as detailed in Table V. Eliminating all errors is impractical, and
our final result trends are consistent and intuitive.

Analysis. We have presented our analysis of this rich dataset. We will release the
data to allow interested readers to pursue their own detailed analysis.

4. METHODOLOGY

In this section, we describe how we use our tools and the overall flow of our analy-
sis. Section 5 presents our data and analysis. Table V describes how we employ the

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://www.cs.wisc.edu/vertical/isa-power-struggles

3:12 E. Blem et al.

aforementioned tools and obtain the measures we are interested in, namely, execution
time, execution cycles, instruction mix, microarchitecture events, power, and energy.

Our overall approach is to understand all performance and power differences and to
use the measured metrics to quantify the root cause of differences and whether or not
ISA differences contribute, thus answering empirical questions from Section 2. Unless
otherwise explicitly stated, all data are measured on real hardware. The flow of the
next section is outlined next.

4.1. Performance Analysis Flow

Step 1: Present execution time for each benchmark
Step 2: Normalize frequency’s impact using cycle counts
Step 3: To understand differences in cycle count and the influence of the ISA, present
the dynamic instruction count measures, measured in both macro-ops and micro-ops
Step 4: Use instruction mix, code binary size, and average dynamic instruction length
to understand ISA’s influence
Step 5: To understand performance differences not attributable to ISA, look at detailed
microarchitecture events
Step 6: Attribute performance gaps to frequency, ISA, or ISA-independent microarchi-
tecture features; qualitatively reason about whether the ISA forces microarchitecture
features

4.2. Power and Energy Analysis Flow

Step 1: Present per-benchmark raw power measurements
Step 2: To factor out the impact of technology, present technology-independent power
by scaling all processors to 45nm and normalizing the frequency to 1GHz
Step 3: To understand the interplay between power and performance, examine raw
energy
Step 4: Qualitatively reason about the ISA influence on microarchitecture in terms of
energy

4.3. Tradeoff Analysis Flow

Step 1: Combining the performance and power measures, compare the processor im-
plementations using Pareto frontiers
Step 2: Compare processor implementations using Energy Performance Pareto frontiers

5. MEASURED DATA ANALYSIS AND FINDINGS

We now present our measurements and analysis of performance, power, energy, and
the tradeoffs among them.

We present our data for all seven platforms, often comparing A8 to Atom (both dual-
issue in-order) and Loongson, A9, A15, and Bobcat to i7 (all out-of-order). For each step,
we present the average measured data, average in-order and OoO ratios if applicable,
and then our main findings. We separate the set of bars and ratios for in-order cores
from those for out-of-order cores with a gap in the relevant figures and corresponding
tables. For detailed (per-benchmark) measurement data, refer to Appendix I.

In Figures 2, 3, 4(a), 8, 9, and 10 and the corresponding tables, the averages including
outliers are shown in parentheses. The averages excluding outliers are depicted by the
bar heights in the figures and by the numbers outside parentheses in the tables. We
categorize a certain benchmark as an outlier if we are not able to run it on one of
the platforms or if its instruction count is unexpectedly high or low. In our analysis,
we show that these abnormalities in instruction count are not due to the ISA. In
the figures and tables mentioned, we categorize the following benchmarks as outliers:

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:13

Fig. 2. Execution time normalized to i7.

webkit (MOBILE), tonto (SPECFP), cactusADM (SPECFP), bwaves (SPECFP), clucene
(SERVER), and lighttpd (SERVER).

5.1. Performance Analysis

Step 1: Execution Time Comparison

Data: Figure 2 shows execution time normalized to i7. Average ratios are in the included
table. Per- benchmark data are shown in Figure 15 of Appendix I.

Ratio Mobile SPEC INT SPEC FP Server
A8/Atom 2.4 (34) 3.5 4.9 (7.4) 6.5 (64.7)
Loongson/i7 5.7 11 20.2 (26.2) 14.3 (6.3)
A9/i7 6 (5.8) 8.4 13.1 (23.8) 12.8 (7.4)
A15/i7 3.4 (1.2) 3.8 4.8 (10.1) 5.8 (4.1)
Bobcat/i7 5.2 (4) 4.6 5.8 (5.9) 3.6 (4.2)

Outliers: See Tables IX, X, XI, and XII. Where outliers are listed, they are in this set.

Outlier 1: A8 performs particularly poorly on webkit tests and lighttpd.

Outlier 2: Loongson performs poorly on hmmer (specINT), database, and some SPECFP
benchmarks.

Outlier 3: A9 performs poorly on database kernels and some SPEC FP benchmarks.

Outlier 4: A15 performs particularly well on webkit tests (45× faster than A95) and
poorly on some SPEC FP benchmarks.

Outlier 5: Bobcat performs poorly on some SPEC FP benchmarks.

Finding P1: Large performance gaps are platform and benchmark dependent: A8/Atom
gaps range from 2× to 152×, Loongson/i7 performance gaps range from 1× to 56×, A9/i7
performance gaps range from 4× to 102×, A15/i7 performance gaps range from 0.06×
to 50×, and Bobcat/i7 performance gaps range from 3× to 11×.

Key Finding 1: Large performance gaps exist across the seven platforms studied, as
expected, since frequency ranges from 600MHz to 3.4GHz and microarchitectures are
very different.

5Such a large performance gap cannot be attributed to the microarchitecture difference between A15 and
A9, despite the fact that A15 is a significant upgrade to A9. Most likely, this gap is due to system software
issues that we haven’t been able to isolate.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:14 E. Blem et al.

Fig. 3. Cycle count normalized to i7.

Step 2: Cycle-Count Comparison

Data: Figure 3 shows cycle counts normalized to i7. Average ratios are in the included
table. Per- benchmark data are in Figures 7(a), 7(b), and 7(c).

Outliers: After normalizing the performance gaps for frequency, we still see the same
outliers as in Step 1.

Finding P2: Despite being from different ISAs, mean cycle count gap of out-of-order
implementations Loongson, A9, A15, and Bobcat with respect to i7, across all suites, is
predominantly less than 3× (not considering outliers).

Ratio Mobile SPEC INT SPEC FP Server
A8/Atom 0.9 (12.5) 1.3 1.8 (2.7) 2.4 (23.4)
Loongson/i7 1.3 2.6 4.7 (6.2) 3.4 (1.5)
A9/i7 1.8 (1.7) 2.5 3.9 (7) 3.8 (2.2)
A15/i7 1.7 (0.6) 1.9 2.3 (4.9) 2.9 (2)
Bobcat/i7 2.3 (1.8) 2 2.5 (2.6) 1.6 (1.8)

Finding P3: Per suite cycle count gap between in-order ARM and x86 implementations
(A8 and Atom) is predominantly less than 2× (not considering outliers).

Key Finding 2: Performance gaps, when normalized to cycle counts, are predominantly
less than 3× when comparing in-order cores to each other and out-of-order cores to each
other.

Step 3: Instruction Count Comparison

Data: Figure 4(a) shows dynamic instruction (macro) counts for Loongson, A8, and
Atom normalized to Atom x86 macro-instructions. We choose A8 and Atom as repre-
sentatives of their respective ISAs since instruction counts should be similar across
cores of the same ISA. Per-benchmark data are shown in Figure 14(a) of Appendix I.

Data: Table VI shows the geometric mean CPI for all implementations across all bench-
mark suites. Per-benchmark data are shown in Table XVI of Appendix I.

Data: Figure 4(b) shows dynamic micro-op counts for Bobcat, Atom, and i7 normal-
ized to Atom macro-instructions.6 Per-benchmark data are shown in Figure 14(b) of
Appendix I.

6For i7, we use issued micro-ops instead of retired micro-ops; we found that, on average, this does not impact
the micro-op-to-macro-op ratio.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:15

Fig. 4. Instructions normalized to Atom macro-ops.

MIPS Outliers:

Outlier 1: For lighttpd, Loongson executes about 8× fewer instructions than x86 and
ARM machines. We were not able to isolate the reason behind this due to insufficient
analysis tools (binary instrumentation tools for MIPS do not exist, and the Loongson
core has limited performance counters).

Outlier 2: Typically, for SPEC FP benchmarks, Loongson executes about 2× more
instructions than x86 machines. We suspect that a more efficient math library on x86
could account for this difference. Again, we could not validate this quantitatively due
to lack of analysis tools.

ARM Outliers:

Outlier 3: For wkperf and lighttpd, A8 executes more than twice as many instructions
as A9.7 We report A9 instruction counts for these two benchmarks.

Outlier 4: All ARM outliers in SPEC FP are due to transcendental FP operations
supported only by x86.

x86 Outliers:

Outlier 5: For Clucene, x86 machines execute 1.7× more instructions than ARM ma-
chines and 2.3× more instructions than Loongson. These appear to be pathological
cases of x86 code generation inefficiencies.

Outlier 6: For cactusADM, Atom executes 2.7× more micro-ops than macro-ops.

Outlier 7: For webkit, i7 executes about 2× more micro-ops than atom.

Finding P4: Instruction count is similar across ISAs (excluding system and library
overheads). This implies that gcc often picks RISC-like instructions from the x86 ISA.

Finding P5: x86 micro-op to macro-op ratio is often less than 1.3×, again suggesting
gcc picks the RISC-like instructions.

Key Finding 3: Despite similar instruction counts across ISAs, CPI can be less on x86
implementations across all suites (as shown in Table VI). This finding disproves prior

7A8 spins for IO, event-loops, and timeouts.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:16 E. Blem et al.

Table VI. Geometric Mean CPI a cross All Benchmark Suites

ISA ARM x86 MIPS ARM ARM x86 x86
Implementation A8 Atom Loongson A9 A15 Bobcat i7
CPI 2.5 1.9 1.5 1.6 1.2 1.3 0.7

Table VII. Instruction Size Summary

(a) Binary Size (MB) (b) Instruction Length (B)
MIPS ARM x86 MIPS ARM x86

M
ob

il
e Minimum – 0.02 0.02 4.0 4.0 2.4

Average 0.55 0.95 0.87 4.0 4.0 3.3
Maximum – 1.30 1.42 4.0 4.0 3.7

D
es

kt
op

IN
T Minimum 0.61 0.53 0.65 4.0 4.0 2.7

Average 1.58 1.47 1.46 4.0 4.0 3.1
Maximum 4.35 3.88 4.05 4.0 4.0 3.5

D
es

kt
op

F
P

Minimum 0.76 0.66 0.74 4.0 4.0 2.6
Average 1.81 1.70 1.73 4.0 4.0 3.4
Maximum 5.21 4.75 5.24 4.0 4.0 6.4

S
er

ve
r Minimum 0.16 0.12 0.18 4.0 4.0 2.5

Average 0.51 0.39 0.59 4.0 4.0 3.2
Maximum 0.84 0.47 1.00 4.0 4.0 3.7

belief that CISC implementations should have a higher CPI than RISC implementa-
tions (due to the complex instructions in CISC). Microarchitecture is the dominant
factor that affects performance, not the ISA.

Step 4: Instruction Format and Mix

Data: Table VII(a) shows average MIPS, ARM, and x86 static binary sizes,8 measur-
ing only the binary’s code sections. Per-benchmark data are shown in Table XV(a) of
Appendix I.

Data: Table VII(b) shows average dynamic MIPS, ARM, and x86 instruction lengths.
Per-benchmark data are shown in Table XV(b) of Appendix I.

Finding P6: Average ARM and x86 binary sizes are similar for SPEC INT, SPEC FP,
and Mobile workloads, thus suggesting similar code densities.

Finding P7: Executed x86 instructions are on average up to 25% shorter than ARM
and MIPS instructions: short, simple x86 instructions are typical.

Finding P8: x86 FP benchmarks, which tend to have more complex instructions, have
instructions with longer encodings (e.g., cactusADM with 6.4 Bytes/inst on average).

Finding P9: MIPS binary sizes are similar to ARM and x86 for specINT and specFP
suites. For mobile and server suites, we do not have enough control over the software
stack for some benchmarks, and hence it would be unfair to compare their instruction
counts to ARM and x86.

Data: Figure 5 shows average coarse-grained ARM and x86 instruction mixes for each
benchmark suite.9

Data: We do not have instruction mix data for MIPS because we were unable to gather
performance counter data beyond cycle and instruction counts (see Section 6).

8On Loongson, binary size data are robust only for specINT and specFP (explained in finding P9). We measure
data only for one benchmark from the mobile suite (coremark).
9x86 instructions with memory operands are cracked into a memory operation and the original operation.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:17

Fig. 5. Instruction mix (performance counters).

Fig. 6. Selected instruction counts (emulated).

Data: Figure 6 shows fine-grained ARM and x86 instruction mixes normalized to x86
for a subset of SPEC benchmarks.

Finding P10: Fraction of loads and stores similar across ISA for all suites (we do
not have these data for MIPS), suggesting that the ISA does not lead to significant
differences in data accesses.

Finding P11: Large instruction counts for ARM are due to absence of FP instructions
like fsincon, fyl2xpl, and the like (e.g., tonto in Figure 6’s many special x86 instruc-
tions correspond to ALU/logical/multiply ARM instructions).

Key Finding 4: Combining the instruction count and mix findings, we conclude that
ISA effects are indistinguishable between x86 and ARM implementations. Due to in-
frastructure limitations, we do not have enough data to make the same claim for the
MIPS platform. However, we suspect that instruction count differences on MIPS plat-
form are due to system software issues and not due to the ISA.

Step 5: Microarchitecture

Data: Figure 7 shows per-benchmark cycle counts for more detailed analysis where
performance gaps are large.

Data: Figures 16, 17, and 18 in Appendix I show per-benchmark branch mispredictions,
L1 data, and instruction cache misses per 1,000 ARM instructions for ARM and x86
platforms.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:18 E. Blem et al.

Fig. 7. Per-benchmark core cycle counts normalized to i7.

Table VIII. Processor Microarchitecture Features

(a) In-Order Cores
Pipeline Issue ALU/FP Br. Pred.
Depth Width Threads Units BTB Entries

A8 13 2 1 2/2 + NEON 512
Atom 16 + 2 2 2 2/2 + IMul 128

(b) Out-of-Order Cores
Issue ROB Entries for
width Threads Size LD/ST Rename Scheduler BTB

Loongson 4 1 64 16 96 32 16
A9 2 1 − −/4 56 20 512

A15 3 1 60 16/16 112 40 256
Bobcat 2 1 − − − − −

i7 4(6) 2 64/36 160 168 54 8K–16K

Data: For Loongson (MIPS) platform, we do not present detailed analysis in this section
due to the absence of event counts like branch and cache misses. Toolchain problems
prevented us from being able to collect these data.

Data: Table VIII compares the primary structures of the in-order and out-of-order cores.
These details are from six Microprocessor Report articles and Loongson manual.10 The

10“Cortex-A8 High speed, low power” (Nov 2005), “More applications for OMAP4” (Nov 2009), “Sandybridge
spans generations” (Sept 2010), “Intel’s Tiny Atom” (April 2008), “Cortex A-15 Eagle Flies the Coop” (Nov

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:19

Table IX. Detailed Analysis for Benchmarks with A8 to Atom Cycle Count Gap Greater than 3×
Benchmark Gap Analysis
tonto 2.9 Instructions: 4.7× more for ARM than x86
cactusADM 3.1 Instructions: 2.8× more for ARM than x86
bwaves 7.1 Instructions: 17.5× more for ARM than x86

Table X. Detailed Analysis for Benchmarks with A9 to i7 Cycle Count Gap Greater than 3×
Benchmark Gap Analysis (Issue width difference explains up to 2× Gap)
omnetpp 3.4 Branch MPKI is 59 for A9 versus only 2.0 for i7. I-Cache MPKI is 33 for A9 versus

only 2.2 for i7.
db_kernels 3.8 1.6× more instructions, 5× more branch MPKI for A9 than i7
tonto 6.2 Instructions: 4× more for ARM than x86
cactusADM 6.6 Instructions: 2.8× more for ARM than x86
milc 8.0 Branch MPKI is 61× more for A9 than i7.
leslie3D 8.4 Branch MPKI is 7× more for A9 than i7. Data cache MPKI is 55 for A9, compared

to only 30 for the i7.
bwaves 30 Instructions: 17.5× more for ARM than x86

Table XI. Detailed Analysis for Benchmarks with A15 to i7 Cycle Count Gap Greater than 3×
Benchmark Gap Analysis (Issue width difference explains up to 1.3× Gap)
tonto 4.9 Instructions: 4× more for ARM than x86
cactusADM 3.7 Instructions: 2.8× more for ARM than x86
milc 3.6 Branch MPKI is 30× more for A15 than i7
leslie3D 4.6 Branch MPKI is 6× more for A15 than i7. Data Cache MPKI is 0.1 for A15

in comparison to 30 for i7, which explains the improved performance on
A15 compared to A9. It also shows that i7’s microarchitecture hides the
data cache misses more effectively than does A15 (and A9)

bwaves 25 Instructions: 17.5× more for ARM than x86

A9 numbers are estimates derived from publicly disclosed information on A15 and
A9/A15 comparisons.

Finding P12: When comparing two processors, the issue width ratio of K explains cycle
count gap up to K, assuming sufficient ILP, a sufficient instruction window, and a well-
balanced processor pipeline.11 The performance gaps not explained by issue width can
be attributed to other microarchitectural event counts (e.g., branch misses on A9, A15,
and Bobcat are more common than on i7). These differences are not because of the ISA,
but rather due to microarchitectural design choices (e.g., A9 and A15 have 512 and
256 BTB entries, respectively, versus i7’s 16K entries12).

Finding P13: Per benchmark, we can attribute the largest gaps in performance between
i7 and other out-of-order processors (and between Atom & A8) to specific microachi-
tectural events. In the interest of space, we present detailed performance analysis
for benchmarks with gaps greater than 3× in Tables IX, X, XI, and XII. Building on
Table XII, we present more elaborate analysis of Bobcat versus i7 performance. We
also present performance analysis of Loongson’s performance with respect to i7. We
do not present elaborate analysis for other tables since they sufficiently explain the

2010), “AMD’s Bobcat snarls at Atom” (August 2010), Loongson User Manual: http://dev.lemote.com/files/
resource/documents/Loongson/ls2f/Loongson2FUserGuide.pdf.
11We use MICA to confirm that our benchmarks all have limit ILP >4 [Hoste and Eeckhout 2007].
12Bobcat has not released its BTB size, but its mean branch MPKI overall benchmarks is higher than i7.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://dev.lemote.com/files/resource/documents/Loongson/ls2f/Loongson2FUserGuide.pdf
http://dev.lemote.com/files/resource/documents/Loongson/ls2f/Loongson2FUserGuide.pdf

3:20 E. Blem et al.

Table XII. Detailed Analysis for Benchmarks with Bobcat to i7 Cycle Count Gap Greater than 3×
Benchmark Gap Analysis (Issue width difference explains up to 2× Gap)
omnetpp 3.1 Branch MPKI is 14× more and I-Cache MPKI is 11× more for Bobcat than i7.
GemsFDTD 3.2 Branch MPKI is 5× more and I-Cache MPKI is 6× more for Bobcat than i7.
cactusADM 4.7 Branch MPKI and I-Cache MPKI is 3× more for Bobcat than i7.
milc 4.6 Branch MPKI is 15× more for Bobcat than i7.

performance gaps. Furthermore, we present detailed analysis of bwaves performance,
comparing ARM and x86 and explaining their large cycle count gap.

Analysis of Bobcat versus i7 Performance:

Table XII analyzes performance gaps between Bobcat and i7. We see that much of
the performance gap (beyond first-order issue width effect) can be attributed to Branch
and I-cache misses. In particular, we notice a discrepency where a branch MPKI gap of
3× on cactusADM has similar impact on performance as a branch MPKI gap of 15× on
milc. This difference is not beyond reason because some misses can be more expensive
for one workload compared to another. Detailed analysis of this behavior is tangential
to the goal of this work since both Bobcat and i7 are x86 ISA implementations.

Analysis of Loongson vs i7 Performance:
The mean performance gap between Loongson and i7 is 3.4×. Apart from two bench-

marks where the gap is 1.6×, all other benchmarks perform more than 2× worse on
Loongson compared to i7 despite both platforms having the same issue width. These
differences may be attributed to smaller load/store queue, rename registers, and BTB
size on Loongson, but we do not have detailed data on this platform to support this
argument.

Analysis of bwaves performance on ARM vs x86:

The bwaves benchmark performed significantly worse (up to 30× more cycles) on
ARM cores than on x86 cores. Contributing to this gap, we found that ARM cores
executed 17.5× more instructions than x86 cores. We believe that most of the ARM-to-
x86 gap for bwaves can be explained by large differences in the number of instructions
required to complete the same amount of work. We performed detailed analysis to find
the source of the instruction count discrepancies. To begin, we found from the execution
profile that complex double floating point operations that the compiler translates to
longer instruction sequences for ARM than for x86 are a significant source of additional
instructions: 37% of all cycles for ARM cores are spent in __aeabi_dadd, and 29% of
all cycles are spent in __aeabi_dmul, whereas neither of these routines appear in the
x86 summary.

We use flags to force gcc to compile floating point instructions to SSE 2 (x86) and
NEON (ARM) instructions. This decision is the fairest in general, since ARM’s VFP unit
is known to be significantly slower than the NEON unit for single precision floating
point operations. However, unlike the VFP unit, the NEON unit is not IEEE754 compli-
ant, and double precision operations are mapped to library calls. The result is that for
ARM architectures, gcc—in the absence of FP relaxation—compiles double-precision
floating point arithmetic to library calls that add significant overhead compared to short
instruction sequences on x86. One solution to bwaves’s outlier status would be to use
different compiler flags for benchmarks with significant amounts of double precision
arithmetic.

Key Finding 5: The microarchitecture has the dominant impact on performance. The
ARM, x86, and MIPS architectures have similar instruction counts. The microarchi-
tecture, not the ISA, is responsible for performance differences.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:21

Fig. 8. Raw average power normalized to A8.

Step 6: ISA Influence on Microarchitecture

Key Finding 6: As shown in Table VIII, there are significant differences in microarchi-
tectures. Drawing on instruction mix and instruction count analysis, we feel that the
only case where the ISA forces larger structures is on the ROB size, physical rename
file size, and scheduler size since there are almost the same number of x86 micro-ops
in flight compared to ARM and MIPS instructions. The difference is small enough that
we argue it is not necessary to quantify further. Beyond the translation to micro-ops,
pipelined implementation of an x86 ISA introduces no additional overheads over an
ARM or MIPS ISA for these performance levels.

5.2. Power and Energy Analysis

Step 1: Average Power

Data: Figure 8 shows average power normalized to the A8.13 Per-benchmark data are
shown in Figure 19 of Appendix I. Average ratios are in the included table.

Ratio Mobile SPEC INT SPEC FP Server
Atom/A8 2.1 (1.9) 3.1 3.2 (3.1) 1.9 (2)
i7/Loongson 6.2 7.5 9 (8.6) 6.5 (7.7)
i7/A9 17.8 (19.5) 17.3 22.8 (20.9) 18.6 (21.4)
i7/A15 4.1 (4) 3.7 4.1 (4) 3.4 (4)
i7/Bobcat 3.8 (4.2) 4.3 5.6 (5.4) 3.5 (4.1)

Finding E1: There are large differences in power across implementations, with i7 (x86)
being the most power-hungry, followed by A15 (ARM) and Bobcat (x86).

Key Finding 7: Power consumption does not have a direct correlation to the ISA being
RISC or CISC.

Step 2: Average Technology Independent Power

Data: Figure 9 shows technology-independent average power; cores are scaled to 1GHz
at 45nm (normalized to A8). Per-benchmark data are shown in Figure 20 of Appendix I.
Average ratios are in the included table.

13In this section, we normalize to A8 because it uses the least power.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:22 E. Blem et al.

Fig. 9. Tech-independent average power normalized to A8.

Ratio Mobile SPEC INT SPEC FP Server
A8/Atom 2.5 (2.8) 1.7 1.7 (1.7) 2.7 (2.7)
A9/Atom 1.2 (1.3) 1.3 1.1 (1.2) 1.1 (1.1)
i7/Bobcat 3 (3.3) 3.4 4.4 (4.2) 2.8 (3.2)
A15/Bobcat 0.9 (1.1) 1.2 1.4 (1.3) 1.1 (1)
Loongson/Bobcat 1.5 1.4 1.5 (1.5) 1.3 (1.3)

Fig. 10. Raw average energy normalized to A8.

Finding E2: With frequency and technology scaling, A8, A9, and Atom appear to be
optimized for power and A15, Bobcat, and i7 optimized for performance.

Finding E3: Loongson appears to be neither a power optimized nor a performance op-
timized design. After scaling, Loongson stands out to be the second most power hungry
while also being the third most cycle hungry implementation. This can be attributed to
the more advanced microarchitectures of the ARM and x86 implementations, not the
ISA.

Finding E4: ISA appears irrelevant among power and performance optimized cores:
despite being from different ISAs, A9 and Atom are within 1.3× of each other. The
same holds true for A15 and Bobcat.

Key Finding 8: The choice of power- or performance-optimized core designs impacts
core power use more than does ISA.

Step 3: Average Energy

Data: Figure 10 shows energy (product of power and time). Per-benchmark data are
shown in Figure 21 of Appendix I. Average ratios are in the included table.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:23

Ratio Mobile SPEC INT SPEC FP Server
Atom/A8 0.9 (0.2) 0.9 0.7 (0.4) 0.3 (0.3)
i7/Loongson 1.1 0.7 0.3 (0.3) 0.5 (1.8)
i7/A9 3 (3) 2.1 1.2 (0.6) 1.5 (5.1)
i7/A15 1.2 (1.5) 1.1 0.7 (0.3) 0.6 (1.8)
i7/Bobcat 0.7 (0.8) 1 0.6 (0.7) 1 (0.9)

Fig. 11. Power performance tradeoffs.

Finding E5: Despite Atom and i7 being the most power hungry in-order and out-of-
order implementations, Atom consumes less energy than A8, and i7 consumes less
energy than Loongson, A15, and Bobcat, on most benchmarks. This shows that high-
performance, high-power implementations (e.g., i7) can be energy efficient.

Finding E6: Across all implementations and benchmark suites, Loongson consumes
the most energy.

Key Finding 9: Since power and performance are both primarily design choices, energy
use is also primarily impacted by design choice. ISA’s impact on energy is insignificant.

Step 4: ISA Impact on Microarchitecture

Data: Table VIII outlines microarchitecture features.

Finding E7: The energy impact of the ISA is that it requires micro-ops translation
and an additional micro-ops cache. Furthermore, since the number of micro-ops is not
significantly higher, the energy impact of x86 support is small.

Finding E8: Other power-hungry structures like a large L2-cache, highly associative
TLB, aggressive prefetcher, and large branch predictor seem dictated primarily by the
performance level and application domain targeted by the implementations and are
not necessitated by ISA features.

5.3. Tradeoff Analysis

Step 1: Power-Performance Tradeoffs

Data: Figure 11 shows the geometric mean power-performance tradeoff for all bench-
marks using technology node-scaled power. We generate a cubic curve for the power-
performance tradeoff curve. Given our small sample set, a core’s location on the frontier
does not imply that it is optimal.

Data: For the table here, we choose A8 (RISC) and Atom (CISC) as representatives of
their respective ISAs since they consume the least power among all implementations
of the respective ISAs.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:24 E. Blem et al.

Ratio Performance Power
A15/A8 6 10.7
A9/A8 2.7 1.7
Loongson/A8 2.2 2.4
i7/Atom 6.6 10.5
Bobcat/Atom 1.4 2

Fig. 12. Energy performance tradeoffs.

Key Finding 10: Regardless of ISA or energy-efficiency, high-performance processors
require more power than lower-performance processors.14 They follow well-established
cubic power/performance tradeoffs regardless of ISA.

Step 2: Energy-Performance Tradeoffs

Data: Figure 12 shows the geometric mean energy-performance tradeoff using technol-
ogy node- scaled energy. We generate a quadratic energy-performance tradeoff curve.
Again, a core’s location on the frontier does not imply optimality.

Finding T1: Balancing power and performance leads to energy-efficient cores, regard-
less of the ISA: A9 and Atom consume less energy and perform better than A8 and
Loongson. The same holds true for i7 when compared to A15.

Data: We consider the Energy-Delay (ED) metric to capture both performance and
power. Figure 13(a) shows the ED metric at various exponents. The exponent weighs
the importance of performance over power.

Data: Figures 13(b) and 13(c) zoom into Figure 13(a) to depict the points where A15
and Bobcat cross over A9.

Finding T2: i7 has the best ED metric at all exponents.

Finding T3: Up to ED0.9, A9 (ARM) is a more balanced design than A15 (ARM) and
Bobcat (x86). It loses that advantage after ED0.9 and ED1.2, irrespective of the fact that
A15 and Bobcat represent different ISAs. Power-performance balance is determined by
the microarchitecture, not the ISA.

Key Finding 11: It is the microarchitecture and design methodologies that really
matter.

6. CHALLENGES

During this study, we encountered infrastructure and system challenges, missteps, and
software/hardware bugs. Table XIII outlines these issues as a potentially useful guide
for similar studies. We describe them in more detail here.

14Loongson consumes more power than A9 while performing worse. This implies design inefficiencies in
Loongson’s microarchitecture.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:25

Fig. 13. Energy delay tradeoffs.

Table XIII. Summary of Challenges

Challenge Description
Board Cooling (A8,A9,A15) No active cooling leading to failures

Fix: Use a fan-based laptop cooling pad
Networking (A8,A9) ssh connection used up to 20% of CPU

Fix: Use a serial terminal
Networking (Atom) USB networking not supported

Fix: Use as standalone terminal
Perf Counters (A8,A9) PMU poorly supported on selected boards

Fix: Backport over 150 TI patches to A8 and A9. Linux 3.8 used on A15.
Perf Counters (A15) Linux 2.6 poorly supported for A15.

Fix: Used Linux 3.8 instead.
Perf Counters (Loongson) Not enough interrupt ports available to support all required perf counters.

Fix: Enabled only two perf counters.
Compilation (A8,A9) Failures due to dependences on >100 packages

Fix 1: Pick portable equivalent (lighttpd)
Fix 2: Work through errors (CLucene & WebKit)

Tracing (A8,A9) No dynamic binary emulation
Fix: Use gem5 to generate instruction traces

Board cooling. The ARM boards lack active cooling and repeatedly rebooted due to
overheating while under test. A fan-based laptop cooling pad fixed the problem.

Network over USB. The ssh connection to the A8 and A9 boards used up to 20% of the
CPU, which was unsuitable for performance benchmarking. We instead used a serial
terminal to access these boards. The Atom board does not support USB networking;
hence, we used it as a standalone terminal. A15 and Bobcat boards were also used as
standalone terminals.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:26 E. Blem et al.

Microprocessor PMU infrastructure. The performance counters on the ARM processor
are poorly supported on community-supported boards. We backported over 150 TI
patches to the Linux kernel 2.6 to support performance counters and PMU interrupts
on A8 and A9. On A15, we decided to use Linux 3.8 due to technical difficulties porting
the 2.6 kernel. On Loongson, due to limited interrupt ports on the processor, only two
performance counters could be enabled. We chose to use them to count cycles and
instructions.

Compilation. For simple benchmarks like SPEC that rely on libc, gcc works re-
markably well as a cross-platform compiler. However, for the ARM environment, the
compiler often fails when compiling complex code bases that have not been rigorously
tested on Linux due to dependences on more than 100 packages. Overcoming these
linking errors is a tremendously tedious process. We either carefully choose equivalent
highly portable workloads (e.g., lighttpd) or worked through the errors (e.g., CLucene
and WebKit).

Tracing and debugging. ARM open-source tracing infrastructure is limited and lacks
dynamic binary translation tools like Pin or DynamoRIO. ptrace-based approaches
were too slow; QEMU correctly emulated, but its JIT obfuscated the instruction stream.
We used gem5 for ARM traces; gem5 does not support all benchmarks (e.g., lighttpd).
For MIPS, binary instrumentation tools do not exist.

7. CONCLUSION

In this work, we revisit the RISC versus CISC debate considering contemporary MIPS,
ARM, and x86 processors running modern workloads to understand the role of ISA on
performance, power, and energy. Our study suggests that the ISA being RISC or CISC
is irrelevant, as summarized in Table XIV, which includes a key representative quanti-
tative measure for each analysis step. For a generation of students, junior researchers,
and others not exposed to the 90s RISC/CISC debate, our article is a rigorous and
thorough analysis that confirms in an experimental fashion that ISA being RISC or
CISC is irrelevant. For the experts, the detailed quantification and measurements add
significant value: We have made all data from the measurements available for others
to analyze and interpret based on other metrics.

Our work includes a methodological contribution. During this study, we encoun-
tered infrastructure and system challenges, missteps, and software/hardware bugs.
Table XIII outlines these issues as a potentially useful guide for similar studies.

We conclude by reflecting on whether there are certain metrics for which RISC or
CISC matters, and we place our findings in the context of past ISA evolution and future
ISA and microarchitecture evolution.

Area overheads and performance. Considering area normalized to the 45nm technol-
ogy node, we observe that A8’s area is 4.3mm2, AMD’s Bobcat’s area is 5.8mm2, A9’s
area is 8.5mm2, and Intel’s Atom is 9.7mm2.15,16,17 The smallest, A8, is smaller than
Bobcat by 25%. We feel much of this is explained by simpler core design (in-order vs.
out-of-order), smaller caches, predictors, and TLBs. We also observe that A9’s area
is in-between Bobcat and Atom and is close to Atom’s. Further detailed analysis is

15http://www.cs.virginia.edu/∼skadron/cs8535_s11/ARM_Cortex.pdf.
16chip-architect, http://www.chip-architect.com/news/AMD_Ontario_Bobcat_vs_Intel_Pineview_Atom.jpg.
17Improved ARM core, other changes in TI mobile app processor, http://www.cs.virginia.edu/∼skadron/
cs8535_s11/ARM_Cortex.pdf.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://www.cs.virginia.edu/protect $elax sim $skadron/cs8535_s11/ARM_Cortex.pdf
http://www.chip-architect.com/news/AMD_Ontario_Bobcat_vs_Intel_Pineview_Atom.jpg
http://www.cs.virginia.edu/~skadron/cs8535s11/ARMCortex.pdf
http://www.cs.virginia.edu/~skadron/cs8535s11/ARMCortex.pdf

ISA Wars 3:27

Table XIV. Summary of Findings

Representative
Finding Support Data: A8/Atom

P
er

fo
rm

an
ce

1 Large performance gaps exist Figure 2 2× to 152×
2

Cycle-count gaps are less than 3×
Figure 3 ≤2×

(A8 to Atom, OoO Processors to i7)
3 CPI can be less on x86 implementation Figures 3 and 4 A8: 2.5, Atom: 1.9

4
ISA performance effects indistinguishable Table VII inst. mix same
between x86 and ARM Figures 5 and 6 short x86 insts

5
μ architecture, not the ISA, responsible

Tables IX, X, XI, XII 324× Br MPKI
for performance differences

6
Beyond micro-op translation, x86 ISA

Table VIII
introduces no overheads over ARM and
MIPS ISA

P
ow

er

7
Power consumption does not have

Figure 8
Atom/A8 raw

a direct correlation to ISA power: 3×
8

Choice of power or perf. optimization
Figure 9

Atom/A8 power
impacts power use more than does ISA @1 GHz: 0.6×

9
Energy use primarily a design choice;

Figure 10
Atom/A8 raw

ISA’s impact insignificant energy: 0.8×

T
ra

de
-o

ff
s 10

High-performance processors require more
Figure 11

A9/A8: 1.7×
power than lower-performance processors i7/Atom: 10.5×

11
It is the μ-architecture and design

Figures 12 and 13 i7 best for all ED exponents
methodology that really matters

required to determine the individual contributions of the ISA and the microarchitec-
ture structures to these differences.

A related issue is the performance level for which our results hold. Considering
very-low-performance processors like the RISC ATmega324PA microcontroller with
operating frequencies from 1 to 20 MHz and power consumption between 2 and 50mW,18

the overheads of a CISC ISA (specifically the complete x86 ISA) are clearly untenable.
In similar domains, even ARM’s full ISA is too rich; the Cortex-M0, meant for low-
power embedded markets, includes only a 56-instruction subset of Thumb-2. Our study
suggests that at performance levels in the range of A8 and higher, RISC/CISC is
irrelevant for performance, power, and energy. Determining the lowest performance
level at which the RISC/CISC ISA effects are irrelevant, for all metrics, is interesting
future work.

Role of ISA. Although our study shows that RISC and CISC ISA traits are irrelevant
to power and performance characteristics of modern cores, ISAs continue to evolve
to better support exposing workload-specific semantic information to the execution
substrate. On x86, such changes include the transition to Intel64 (larger word sizes,
optimized calling conventions, and shared code support), wider vector extensions like
AVX, integer crypto and security extensions (NX), hardware virtualization extensions,
and, more recently, architectural support for transactions in the form of HLE. Simi-
larly, ARM ISA has introduced shorter fixed-length instructions for low-power targets
(Thumb), vector extensions (NEON), DSP and bytecode execution extensions (Jazelle
DBX), Trustzone security, and hardware virtualization support. Thus, although ISA

18Atmel Datasheet, http://www.atmel.com/Images/doc2503.pdf.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://www.atmel.com/Images/doc2503.pdf

3:28 E. Blem et al.

evolution has been continuous, it has focused on enabling specialization and has been
largely agnostic of RISC or CISC. Other examples from recent research include exten-
sions to allow the hardware to balance accuracy and reliability with energy efficiency
[Esmaeilzadeh et al. 2012; de Kruijf et al. 2010] and extensions to use specialized
hardware for energy efficiency [Govindaraju et al. 2011]. Finally, Venkat and Tullsen
[2014] recently studied the performance and energy benefits of ISA heterogenity. Our
interpretation of their data, experiments, and analysis is the following: The pres-
ence or absence of specializations such as floating point and SIMD support, on one
ISA over the other, are the primary ISA differentiators for performance and energy.
In essence, we argue RISC versus CISC was about the syntax of expression to the
machine—arguably important before, but irrelevant now. In the future, the role of the
ISA is going to be dominated by expressing richer semantics. This is the important and
broad implication of our work for related fields of systems, compiler, and application
development.

It appears that decades of hardware and compiler research has enabled efficient
handling of both RISC and CISC ISAs, and both are equally positioned for the coming
years of energy-constrained innovation.

A. APPENDIX I: DETAILED COUNTS

Data: Figure 14(a) shows dynamic instruction (macro) counts for Loongson (MIPS), A8
(ARM), and Atom (x86) normalized to A8 macro-instructions.

Data: Figure 14(b) shows dynamic micro-op counts for Bobcat, Atom, and i7 normalized
to A8 macro-instructions.

Data: Table XV(a) shows average MIPS, ARM, and x86 static binary sizes, measuring
only the binary’s instruction segment.

Data: Table XV(b) shows average dynamic MIPS, ARM, and x86 instruction lengths.

Data: Table XVI shows per-benchmark CPI.

Data: Figure 15 shows per-benchmark execution time normalized to i7.

Data: Figure 16 shows per-benchmark branch mispredictions per 1,000 ARM instruc-
tions for ARM and x86 platforms.

Data: Figure 17 shows per-benchmark L1 data cache misses per 1,000 ARM instructions
for ARM and x86 platforms.

Data: Figure 18 shows per-benchmark instruction cache misses per 1,000 ARM instruc-
tions for ARM and x86 platforms.

Data: Figure 19 shows average power normalized to A8.

Data: Figure 20 shows technology-independent average power; cores are scaled to 1GHz
at 45nm (normalized to A8).

Data: Figure 21 shows average energy normalized to A8.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:29

Fig. 14. Instructions normalized to Atom macro-ops.

Table XV. Instruction Size Details: (a) Static Binary (MB), (b) Average Dynamic Instruction (B)

Mobile SPEC INT SPEC FP Server

co
re

m
ar

k

w
k

-
la

yo
u

t
w

k
-

pe
rf

as
ta

r
li

bq
u

an
tu

m

h
m

m
er

h
26

4
go

bm
k

bz
ip

2
sj

en
g

gc
c

pe
rl

be
n

ch
om

n
et

pp

so
pl

ex

G
em

sF
D

T
D

ca
lc

u
li

x
po

vr
ay

to
n

to

n
am

d
le

sl
ie

3D
m

il
c

ca
ct

u
sA

D
M

bw
av

es

lu
ce

n
e

db
ke

rn
el

li
gh

tt
pd

B
in MIPS 0.5 — — 0.70.7 1 1.72.20.60.74.4 2 1.9 1.41.22.92.25.2 1 0.90.81.70.8 0.8 0.5 0.2

ARM 0.021.31.3 0.60.60.91.72.10.50.63.91.92.0 1.41.32.72.04.80.90.90.71.70.8 0.40.470.1
x86 - gcc0.021.41.4 0.70.70.91.52.10.70.74.11.71.7 1.51.32.61.85.20.90.90.71.50.8 1.0 0.6 0.2
x86 - icc 0.6 1.51.5 0.70.71.01.32.20.70.84.31.92.2 1.51.73.12.26.81.01.40.82.0 — — — —

In
st MIPS 4.0 — — 4.04.04.04.04.04.04.04.04.04.0 4.04.04.04.04.04.04.04.04.04.0 4.0 4.0 4.0

ARM 4.0 4.04.0 4.04.04.04.04.04.04.04.04.04.0 4.04.04.04.04.04.04.04.04.04.0 4.0 4.0 4.0
x86 - gcc 2.4 3.73.7 2.93.03.03.53.13.63.52.82.92.7 2.73.42.92.63.43.34.12.66.43.0 3.7 2.6 3.7
x86 - icc 2.5 3.23.2 3.22.93.63.33.33.43.62.93.22.8 3.13.63.33.54.24.95.04.16.1 — — — —

Table XVI. Cycles per Instruction (CPI) per Benchmark

Mobile SPEC INT SPEC FP Server

co
re

m
ar

k
w

k
-

la
yo

u
t

w
k

-
pe

rf

as
ta

r
li

bq
u

an
tu

m

h
m

m
er

h
26

4
go

bm
k

bz
ip

2

sj
en

g
gc

c

pe
rl

be
n

ch

om
n

et
pp

so
pl

ex

G
em

sF
D

T
D

ca
lc

u
li

x
po

vr
ay

to
n

to

n
am

d

le
sl

ie
3D

m
il

c

ca
ct

u
sA

D
M

bw
av

es

lu
ce

n
e

db
ke

rn
el

li
gh

tt
pd

MIPS 1.1 — — 1.5 0.8 1.6 1 1.3 1.7 1.3 1.5 1.5 1.4 1.3 3.2 1.3 1.2 1.3 1.1 3.3 2.1 1.4 2.2 1.4 1.5 2.2
ARM 1.2 3.4 77 2.3 0.9 1.5 1.3 2.3 2.2 2 2.7 2.9 3.4 1.9 2.4 2.6 4.1 1.7 7.5 5.4 10.2 5.7 1.4 2.2 1.4 190
x86 1.2 2.4 2.2 2 1 1.5 1.4 1.9 2.1 1.6 1.9 2.3 2.2 2.3 3.4 1.6 2.3 2.7 2.3 4.1 3.5 5.2 3.4 2 0.9 4.3

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:30 E. Blem et al.

Fig. 15. Per-benchmark execution time normalized to i7.

Fig. 16. Per-benchmark branch mispredictions per 1,000 ARM instructions.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:31

Fig. 17. Per-benchmark L1 data cache misses per 1,000 ARM instructions.

Fig. 18. Per-benchmark instruction cache misses per 1,000 ARM instructions.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:32 E. Blem et al.

Fig. 19. Per-benchmark raw average power normalized to A8.

Fig. 20. Per-benchmark tech-independent average power normalized to A8.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

ISA Wars 3:33

Fig. 21. Per-benchmark raw average energy normalized to A8.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, the Vertical group, and the PARSA group for comments. Thanks to Doug
Burger, Mark Hill, Guri Sohi, David Wood, Mike Swift, Greg Wright, Jichuan Chang, and Brad Beckmann
for comments on the article and thought-provoking discussions on ISA impact. Thanks for various comments
on the article and valuable input on ISA evolution and area/cost overheads of implementing CISC ISAs
provided by David Patterson.

REFERENCES

Max Baron. 2010. The single-chip cloud computer. Microprocessor Report (April 2010).
Dileep Bhandarkar. 1997. RISC versus CISC: A tale of two chips. SIGARCH Computer Architecture News

25, 1 (March 1997), 1–12.
Dileep Bhandarkar and Douglas W. Clark. 1991. Performance from architecture: Comparing a RISC and a

CISC with similar hardware organization. In ASPLOS’91. 310–319.
Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark Hill, and David Wood. 2011. The gem5 simulator. SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7.

W. Lloyd Bircher and Lizy K. John. 2008. Analysis of dynamic power management on multi-core processors.
In ICS’08. 327–338.

Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. 2013. Power struggles: Revisiting the
RISC vs. CISC debate on contemporary ARM and x86 architectures. In HPCA’13. 1–12.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infrastructure for adaptive dynamic
optimization. In CGO’03. 265–275.

Robert Colwell, Charles Y. Hitchcock, III, E. Jensen, H. Brinkley Sprunt, and Charles Kollar. 1985. Instruc-
tion sets and beyond: Computers, complexity, and controversy. Computer 18, 9 (Sept. 1985), 8–19.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An architectural framework
for software recovery of hardware faults. In ISCA’10. 497–508.

Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen Blackburn, and Kathryn McKinley. 2011. Looking back
on the language and hardware revolutions: Measured power, performance, and scaling. In ASPLOS’11.
319–332.

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

3:34 E. Blem et al.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture support for disciplined
approximate programming. In ASPLOS’12. 301–312.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware. In ASPLOS’12. 37–48.

Michael J. Flynn, Chad L. Mitchell, and Johannes M. Mulder. 1987. And now a case for more complex
instruction sets. Computer 20, 9 (1987), 71–83.

Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. 2011. Dynamically specialized
datapaths for energy efficient computing. In HPCA’11. 503–514.

Anthony Gutierrez, Ronald G. Dreslinski, Thomas F. Wenisch, Trevor Mudge, Ali Saidi, Chris Emmons, and
Nigel Paver. 2011. Full-system analysis and characterization of interactive smartphone applications. In
IISWC’11. 81–90.

K. Hoste and L. Eeckhout. 2007. Microarchitecture-independent workload characterization. IEEE Micro 27,
3 (2007), 63–72. DOI:http://dx.doi.org/10.1109/MM.2007.56

Canturk Isci and Margaret Martonosi. 2003. Runtime power monitoring in high-end processors: Methodology
and empirical data. In MICRO’03. 93.

Ciji Isen, Lizy John, and Eugene John. 2009. A tale of two processors: Revisiting the RISC-CISC debate. In
2009 SPEC Benchmark Workshop. 57–76.

Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen, Nadathur Satish, Jatin
Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009. Sort vs. hash revisited: Fast join implementation
on modern multi-core CPUs. VLDB’09 (2009), 1378–1389.

David A. Patterson and David R. Ditzel. 1980. The case for the reduced instruction set computer. SIGARCH
Comp. Arch. News 8, 6 (1980), 25–33.

Jun Rao and Kenneth A. Ross. 2000. Making B+− trees cache conscious in main memory. In SIGMOD’00.
475–486.

Ashish Venkat and Dean M. Tullsen. 2014. Harnessing ISA diversity: Design of a heterogeneous-ISA chip
multiprocessor. In ISCA’14. 121–132.

Received December 2013; revised June 2014; accepted October 2014

ACM Transactions on Computer Systems, Vol. 33, No. 1, Article 3, Publication date: March 2015.

http://dx.doi.org/10.1109/MM.2007.56

