
46 Xcell Journal Fourth Quarter 2011

XPLANATION: FPGA 101

Using the Clock
Period Constraint
to Your Advantage
Understanding the TS_clk constraint in terms of
Xilinx ISE and tool behavior will help you attain
effective timing closure in FPGA designs.

by Sharad Sinha
PhD Candidate
Center for High-Performance Embedded Systems
Nanyang Technological University
sharad_sinha@pmail.ntu.edu.sg

Designers set timing constraints to meet the partic-
ular timing requirements of their chip designs.
Then the physical-synthesis tools place and route

the design so as to meet these timing constraints. One very
common and important timing constraint is related to the
maximum clock frequency and is commonly referred to as
the period constraint. In the Xilinx® ISE® tool suite, this
constraint goes by the name TS_clk in the user constraint
file (UCF). The Xilinx Timing Constraints User Guide
states that the period constraint is used to:

1) Define each clock in a design

2) Cover all synchronous paths within each clock
domain

3) Cross-check paths between related clock domains

4) Define the duration of clocks

5) Define the duty cycle of clocks

The user guide offers a wealth of details and good, rel-
evant explanations of the functions of the period con-
straint. But it’s worth taking a closer look “under the
hood” of the FPGA synthesis tools to explore a number of
questions about the behavior of the period constraint,
and to gain insight into the way placement-and-routing
algorithms work. Specifically, let’s consider ways to inter-
pret a failing TS_clk constraint; examine whether you’ll
get progressively better results by constraining the tool
progressively; and discuss why the tool shows a discrep-
ancy in results. Finally, let’s also ask whether such a tim-
ing constraint always helps vs. proceeding with an uncon-
strained design.

HOW TO INTERPRET A
FAILING TS_CLK CONSTRAINT
If a design fails to meet the clock period constraint, it
means that it cannot run at that clock frequency. You can
attempt thereafter to pipeline the design so as to relax the
timing budget in the slow paths. Pipelining may be
enough to make the design meet the constraint. Another
way to improve timing is to reduce the number of logic
levels between two registers—essentially, you need to
simplify the logic design in the critical path. These two
techniques are applicable at the design level, where a
designer can do the necessary modifications to the RTL
code. If your design still has not met timing after the RTL
modifications, the next step is to enable the Xilinx ISE
switches -register_balancing (which is meant for register
retiming) and -register_duplication (which duplicates
registers to ease high fanout at a particular register).

Another way to improve timing is to assign pins to I/O
signals properly. A good design practice is to assign adja-

Fourth Quarter 2011 Xcell Journal 47

X P L A N A T I O N : F P G A 1 0 1

cent pins to adjacent signals. For instance, you should
assign all the signals on an I/O bus to adjacent pins in
one bank. Use adjacent banks while assigning large
numbers of pins.

These points are significant because they act as con-
straints for the place-and-route tool. The tool would gen-
erally try to keep related logic together. This effort
improves when relevant I/Os are assigned adjacent pins,
because the technique will likely decrease routing
delays. The tool would then not scatter the logic on the
device. Scattering logic increases routing delays.

Generally, when an FPGA has to sit on a printed-cir-
cuit board, you need to take additional board-related
considerations into account while assigning pins. Since
the FPGA would interface with other chips on a board,
adjacent pin assignments may not always be possible.
Therefore, it is always best for an FPGA designer to con-
sult with the board designer early in the design cycle to
reduce pin assignment conflicts.

Still another way to improve timing is to use a higher-
speed-grade device. However, this affects the price of
the product and hence is not an easy option. Not only is
there the higher cost of the device itself to take into
account, but also a higher-speed part has an impact on
board design and could easily increase the board design
cost as well.

DOES THE TOOL ALWAYS GIVE YOU A BETTER
RESULT AS YOU CONSTRAIN IT PROGRESSIVELY?
Sometimes we would like to know the maximum frequen-
cy at which a particular design can run. To investigate
this, we constrain the design progressively. For instance,
we start with a clock period constraint of 8 nanoseconds
(corresponding to a clock frequency of 125 MHz). If the
tool succeeds in placing and routing the design under the
constraint, it might report a minimum clock period of
something like 7.68 ns. We can then constrain the clock
period to 7.68 ns and rerun ISE. This time the tool might
report a minimum clock period of 7.56 ns. However, when
we constrain the design again to 7.56 ns, the tool might
report timing failure with the minimum possible clock
period being, say, 7.74 ns. This means that we need to
constrain the design to 7.68 ns in order to achieve the fig-
ure of 7.56 ns. So, there is a limit to progressive constrain-
ing of a design in order to improve timing. After a certain
level of constraint, the results might deteriorate.

If the design is small and the period constraint is very
tight (a very small period), the tool may report a clock
value less than the period constraint in the post-place-
and-route (PPR) static timing report. But it would still
show a timing-error score (which is zero when there is
no timing error) like the one on this page, from an actu-
al static timing report of a design (targeted at

48 Xcell Journal Fourth Quarter 2011

X P L A N A T I O N : F P G A 1 0 1

XC4VFX140-11FF1517) in which the period constraint
was set to 1.5 ns with 50 percent duty cycle:

1 constraint not met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Clock to Setup on destination clock clk

-------------+-----------+----------+-----------+--------------+

| Src: Rise | Src: Fall | Src: Rise | Src: Fall |

Source Clock | Dest: Rise | Dest: Rise | Dest: Fall | Dest: Fall|

-------------+-----------+----------+-----------+---------------+

clk | 1.489 | | |

-------------+-----------+----------+-----------+---------------+

Timing summary:

Timing errors: 1 Score: 722 (Setup/Max: 0, Hold: 0, Component

Switching Limit: 722)

Constraints cover 40 paths, 0 nets and 62 connections

Design statistics:

Minimum period: 2.222 ns{1} (Maximum frequency: 450.045 MHz)

The report clearly shows a clock period of 1.489 ns,
which is less than 1.5 ns. However, this design was target-
ed at a speed-grade -11 Virtex®-4 device with a maximum
frequency of 450.05 MHz. Hence, there is a timing error.
The point is that it is important to read about the device’s
switching characteristics also while setting the constraint.

WHY DOES THE TOOL SHOW
A DISCREPANCY IN RESULTS?
The tool begins to show a discrepancy in results because
it works based on heuristic algorithms. Designers use
these algorithms to solve problems for which exact algo-
rithms are either unsuitable, for reasons of time and space
complexities, or extremely difficult to develop. To choose
a solution, heuristic algorithms generally use a so-called
cost function, which takes into account some information
about the device or some other empirically derived con-
stants. These algorithms do not, however, guarantee that
the solution will be the best or the optimal one.

Often heuristic algorithms start with an initial random
seed value for placement of logic; then the placement
process grows around the seed location based on the cost
function analysis, and routing follows. Since the seed
value may change with each invocation of the tool follow-
ing each change in constraint, the results can get worse
beyond a certain point. The tool has no reference of what
it did and what results it reported in the last run so as to
improve its working further. It is extremely difficult to
design a place-and-route algorithm that takes a prior

placement-and-routing strategy into account, and com-
pares the current and the previous results.

The SmartGuide™ technology in Xilinx ISE can guide a
new implementation based on results from a previous
one. But SmartGuide works only if there is some change
in logic between two iterations of an implementation. It is
not applicable when there is no change in logic and the
same design is simply constrained progressively. Quite
often, designers get confused with this distinction.

For its part, the SmartXplorer option in Xilinx ISE is sim-
ply one way of speeding up the process of investigating tim-
ing with different timing constraints. This strategy allows a
designer to investigate the same design with different con-
straints as the tool executes them in parallel on different
machines: on a Linux network or a Linux/Windows machine
with multiple processors.

Thus, even with these options available in Xilinx ISE (and
similar options in other FPGA design suites), the tool does
not remember what it did in the previous run in order to
compare and improve its results in the next run when timing
constraints are progressively tighter. If that were the case,
then beyond a certain point, the tool should simply report
one minimum value instead of different values on constrain-
ing progressively. Since it’s so difficult to design an algo-
rithm that uses prior placement-and-routing information as a
feedback to improve the timing of the same design, it pays to
know and understand the limitations of the tools.

DOES A TIMING CONSTRAINT ALWAYS HELP
OVER AN UNCONSTRAINED DESIGN?
The traditional thinking is that a constrained design will
always have better timing than an unconstrained design.
This is true in general. However, it is not always the case.
Sometimes the tool places and routes the design in the
best possible way when the design is unconstrained. The
maximum achievable clock frequency is highest in the
unconstrained implementation, as highlighted in Table 1.
The reason for this discrepancy is again the way place-
and-route algorithms work.

Our team at the Center for High-Performance Embedded
Systems at Nanyang Technological University implemented
the sum-of-absolute-differences (SAD) algorithm on a Virtex-4
XC4VFX140-11FF1517 FPGA using Xilinx ISE version 12.2
M.63C (see Xcell Journal Issue 75, page 38). We employed an
8 x 8 SAD that used eight image pixels (16 bits each) and
eight reference pixels (16 bits each), using external select sig-
nals to choose which two pixels to subtract so that the design
would have only one subtractor. We did not use any condi-
tioning registers, and all internal registers were initialized to
zero. We did no pin assignment for this experiment.

As you can see from Table 1, we achieved the best min-
imum clock period of 2.607 ns when no constraint was
set. When we set 2.607 ns as the period constraint, the

X P L A N A T I O N : F P G A 1 0 1

Fourth Quarter 2011 Xcell Journal 49

tool reported 2.863 ns as the best achievable clock period.
Setting 2.863 ns as the period constraint resulted in a best
achievable clock period of 2.795 ns. This is because the
tool stops trying to meet the constraint once it achieves a
value close to it. Setting 2.795 ns as the new constraint did
not bring down the best achievable clock period to 2.607
ns but raised it to 2.966 ns. In this case, the tool failed to
meet the constraint.

This randomness in results stems from the heuristic
nature of place-and-route algorithms. This is also the rea-
son why designers need to spend significant time in setting
and resetting period constraints to meet timing closure.

PSEUDO-RANDOM SOLUTION
The period constraint is one of the most important con-
straints in FPGA design and is critical to timing closure. It
is therefore important to understand how it behaves and
how to interpret its results. Progressively constraining the
clock period does not always improve the result. Vendors
generally enhance the place-and-route algorithm imple-
mented in their FPGA design tools upon every major
release of the software. Hence, the timing results may vary
from one version to another.

Unlike ASICs, where routing and placement are highly
deterministic, FPGA placement-and-routing algorithms
are heuristic in nature. This is easy to understand because
of the very nature of FPGAs, where random logic has to be
mapped onto a fixed hardware architecture with fixed
components and routing resources.

FPGA placement-and-routing is an NP-complete problem
—one for which there is no efficient way to locate a solution.
For such problems, no known polynomial-time algorithms
exist that can give an accurate or optimal solution. Hence,
solving them involves using heuristics or some approxima-
tion or similar methods based on pseudo-random processes.

Also, the runtimes of these algorithms can vary rapidly
with any increase in the size of the input, as many of us
have experienced with large FPGA designs. This is a funda-
mental aspect of NP-complete problems. For this reason,
the quality of results depends a lot on the type of heuristics
used or the approximation method employed.

Period constraint (ns) PPR reported value (ns)

No constraint 2.607

2.607 2.863

2.863 2.795

2.795 2.966

2.966 2.762

Table 1 – Effect of period constraint on actual timing

