
44 Xcell Journal Third Quarter 2011

How Do I
Reset My FPGA?
Devising the best reset structure can
improve the density, performance and
power of your design.

ASK FAE-X

by E. Srikanth
Solutions Development Engineer
Xilinx, Inc.
serusal@xilinx.com

Third Quarter 2011 Xcell Journal 45

I n an FPGA design, a reset acts as
a synchronization signal that
sets all the storage elements to a

known state. In a digital design,
designers normally implement a glob-
al reset as an external pin to initialize
the design on power-up. The global
reset pin is similar to any other input
pin and is often applied asynchro-
nously to the FPGA. Designers can
then choose to use this signal to reset
their design asynchronously or syn-
chronously inside the FPGA.

But with the help of a few hints
and tips, designers will find ways to
choose a more suitable reset struc-
ture. An optimal reset structure will
enhance device utilization, timing and
power consumption in an FPGA.

UNDERSTANDING THE
FLIP-FLOP RESET BEHAVIOR
Before we delve into reset tech-
niques, it is important to understand
the behavior of flip-flops inside an
FPGA slice. Devices in the Xilinx® 7
series architecture contain eight reg-
isters per slice, and all these registers
are D-type flip-flops. All of these flip-
flops share a common control set.

The control set of a flip-flop is the
clock input (CLK), the active-high
chip enable (CE) and the active-high
SR port. The SR port in a flip-flop
can serve as a synchronous set/reset
or an asynchronous preset/clear port
(see Figure 1).

The RTL code that infers the flip-
flop also infers the type of reset a
flip-flop will use. The code will infer
an asynchronous reset when the
reset signal is present in the sensitiv-
ity list of an RTL process (as shown
in Figure 2a). The synthesis tool will
infer a flip-flop with an SR port con-

figured as a preset or clear port (rep-
resented by the FDCE or FDPE flip-
flop primitive). When the SR port is
asserted, the flip-flop output is imme-
diately forced to the SRVAL attribute
of the flip-flop.

In the case of synchronous resets,
the synthesis tool will infer a flip-flop
whose SR port is configured as a set
or reset port (represented by an FDSE
or FDRE flip-flop primitive). When
the SR port is asserted, the flip-flop
output is forced to the SRVAL attrib-
ute of the flip-flop on the next rising
edge of the clock.

In addition, you can initialize the
flip-flop output to the value the INIT
attribute specifies. The INIT value is
loaded into the flip-flop during config-
uration and when the global set reset
(GSR) signal is asserted.

The flip-flops in Xilinx FPGAs can
support both asynchronous and syn-
chronous reset and set controls.
However, the underlying flip-flop can
natively implement only one set/
reset/preset/clear at a time. Coding for

more than one set/reset/preset/clear
condition in the RTL code will result in
the implementation of one condition
using the SR port of the flip-flop and the
other conditions in fabric logic, thus
using more FPGA resources.

If one of the conditions is synchro-
nous and the other is asynchronous,

the asynchronous condition will be
implemented using the SR port and the
synchronous condition in fabric logic.
In general, it’s best to avoid more than
one set/reset/preset/clear condition.
Furthermore, only one attribute for
each group of four flip-flops in a slice
determines if the SR ports of flip-flops
are synchronous or asynchronous.

RESET METHODOLOGY
Regardless of the reset type used (syn-
chronous or asynchronous), you will
generally need to synchronize the reset
with the clock. As long as the duration
of the global reset pulse is long
enough, all the device flip-flops will
enter the reset state. However, the
deassertion of the reset signal must
satisfy the timing requirements of the
flip-flops to ensure that the flip-flops
transition cleanly from their reset state
to their normal state. Failure to meet
this requirement can result in flip-flops
entering a metastable state.

Furthermore, for correct operation
of some subsystems, like state

A S K F A E - X

D

CE

Q

CK

CR

Figure 1 – Slice flip-flop control signals

(a) (b)

INIT

SRVAL

signal Q:std_logic:=‘1’;
....
async: process (CLK, RST)
begin
 if (RST='1')then
 Q <= '0';
 else
 if (CLK’event and CLK='1') then
 Q <= D;
 end if;
 end if;
end process async;

signal Q:std_logic:=‘1’;
....
sync: process (CLK)
begin
 if (CLK’event and CLK='1') then
 if (RST='1') then
 Q <= '0';
 else
 Q <= D;
 end if;
 end if;
end process sync;

Figure 2 – SRVAL and INIT attributes define flip-flop reset and initialization: here,
VHDL code to infer asynchronous (a) and synchronous (b) reset.

machines and counters, all flip-flops
must come out of reset on the same
clock edge. If different bits of the same
state machine come out of reset on dif-
ferent clocks, the state machine may
transition into an illegal state. This rein-
forces the need to make the deasser-
tion of reset synchronous to the clock.

For designs that use a synchro-
nous reset methodology for a given
clock domain, it is sufficient to use a
standard metastability resolution cir-
cuit (two back-to-back flip-flops) to
synchronize the global reset pin onto
a particular clock domain. This syn-
chronized reset signal can then ini-
tialize all storage elements in the
clock domain by using the synchro-
nous SR port on the flip-flops.
Because both the synchronizer and
the flip-flops to be reset are on the
same clock domain, the standard
PERIOD constraint of the clock cov-
ers the timing of the paths between
them. Each clock domain in the
device needs to use a separate syn-
chronizer to generate a synchronized
version of the global reset for that
clock domain.

Now let’s get down to brass tacks.
Here are some specific hints and tips
that will help you arrive at the best
reset strategy for your design.

Tip 1: When driving the syn-
chronous SR port of flip-flops,
every clock domain requires its
own localized version of the
global reset, synchronized to
that domain.

Sometimes a portion of a design is not
guaranteed to have a valid clock. This
can occur in systems that use recov-
ered clocks or clocks that are sourced
by a hot-pluggable module. In such
cases, the storage elements in the
design may need to be initialized with
an asynchronous reset using the asyn-
chronous SR port on the flip-flops.
Even though the storage elements use
an asynchronous SR port, the
deasserting edge of the reset must still

be synchronous to the clock. This
requirement is characterized by the
reset-recovery timing arc of the flip-
flops, which is similar to a setup
requirement of the deasserting edge of
an asynchronous SR to the rising edge
of the clock. Failure to meet this tim-
ing arc can cause flip-flops to enter a
metastable state and synchronous sub-
systems to enter unwanted states.

The reset bridge circuit shown in
Figure 3 provides a mechanism to

assert reset asynchronously (and
hence take effect even in the absence
of a valid clock) and deassert reset
synchronously. In this circuit, it is
assumed that the SR ports of the two
flip-flops have an asynchronous preset
functionality (SRVAL=1).

You can use the output of such a
reset bridge to drive the asynchro-
nous reset for a given clock domain.
This synchronized reset can initialize
all storage elements in the clock
domain by using the asynchronous
SR port on the flip-flops. Again, each
clock domain in the device needs a
separate, synchronized version of
the global reset generated by a sepa-
rate reset bridge.

Tip 2: A reset bridge circuit
provides a safe mechanism to
deassert an asynchronous
reset synchronously. Every
clock domain requires its own

localized version of the global
reset with the use of a reset
bridge circuit.

The circuit in Figure 3 assumes that the
clock (clk_a) for clocking the reset
bridge and the associated logic is stable
and error free. In an FPGA, clocks can
come directly from an off-chip clock
source (ideally via a clock-capable pin),
or can be generated internally using an
MMCM or phase-locked loop (PLL).

Any MMCM or PLL that you’ve used to
generate a clock requires calibration
after it is reset. Hence, you may have to
insert additional logic in the global
reset path to stabilize that clock.

Tip 3: Ensure that the clock the
MMCM or PLL has generated is
stable and locked before deassert-
ing the global reset to the FPGA.

Figure 4 illustrates a typical reset imple-
mentation in an FPGA.

The SR control port on Xilinx regis-
ters is active high. If the RTL code
describes active-low set/reset/preset/
clear functionality, the synthesis tool
will infer an inverter before it can
directly drive the control port of a reg-
ister. You must accomplish this inver-
sion with a lookup table, thus taking up
a LUT input. The additional logic that
active-low control signals infers may

46 Xcell Journal Third Quarter 2011

A S K F A E - X

D Q

CK

SR

rst_pin

rst_clk_a
SR

D Q

CK

clk_a

Figure 3 – Reset bridge circuit asserts asynchronously and deasserts synchronously.

lead to longer runtimes and result in
poorer device utilization. It will also
affect timing and power.

The bottom line? Use active-high con-
trol signals wherever possible in the
HDL code or instantiated components.
When you cannot control the polarity of
a control signal within the design, you
need to invert the signal in the top-level
hierarchy of the code. When described in
this manner, the inferred inverter can be
absorbed into the I/O logic without using
any additional FPGA logic or routing.

Tip 4: Active-high resets enable
better device utilization and
improve performance.

It’s important to note that FPGAs do
not necessarily require a global reset.
Global resets compete for the same
routing resources as other nets in a
design. A global reset would typically
have high fanout because it needs to be

propagated to every flip-flop in the
design. This can consume a significant
amount of routing resources and can
have a negative impact on device uti-
lization and timing performance. As a
result, it is worth exploring other reset
mechanisms that do not rely on a com-
plete global reset.

When a Xilinx FPGA is configured
or reconfigured, every cell (including
flip-flops and block RAMs) is initial-
ized as shown in Figure 5. Hence,
FPGA configuration has the same
effect as a global reset in that it sets
the initial state of every storage ele-
ment in the FPGA to a known state.

Third Quarter 2011 Xcell Journal 47

A S K F A E - X

D Q

CK

SR SR

D Q

CK

SR

Flip-Flop

CLK

SR

Flip-Flop

CLK
SR

Flip-Flop

CLK

M
M
C
M

Asynchronous Reset

Clock Domain A

To SR ports

D Q

CK

SR SR

D Q

CK

SR

Flip-Flop

CLK

SR

Flip-Flop

CLK

SR

Flip-Flop

CLK
Asynchronous Reset

CLKB

CLKA

Clock Domain B

To SR ports

External
Reset Pin

Global Clock
Input Pin

MMCM
Lock

Figure 4 – Typical reset implementation in FPGAs

FDC
‘0’

FDP
‘1’

FPGA

RAM

00000000
111111111
01010111
111111111
00000000

Configuration

RESET

Figure 5 – FPGA initialization after configuration

You can infer flip-flop initialization
values from RTL code. The example
shown in Figure 6 demonstrates how
to code initialization of a register in
RTL. FPGA tools can synthesize ini-
tialization of the signals even though it
is a common misconception that this
is not possible. The initialization value
of the underlying VHDL signal or
Verilog reg becomes the INIT value for
the inferred flip-flop, which is the
value loaded into the flip-flop during
configuration.

As with registers, you can also ini-
tialize block RAMs during configura-
tion. With the increase in embedded
RAMs in processor-based systems,
BRAM initialization has become a use-
ful feature. This is because a prede-
fined RAM facilitates easier simulation
setup and eliminates the requirement
to have boot-up sequences to clear
memory for embedded designs.

The global set reset (GSR) signal is
a special prerouted reset signal that
holds the design in the initial state
while the FPGA is being configured.
After the configuration is complete,
the GSR is released and all of the flip-
flops and other resources now possess
the INIT value. In addition to operat-
ing it during the configuration process,
a user design can access the GSR net
by instantiating the STARTUPE2 mod-
ule and connecting to the GSR port.
Using this port, the design can reassert

the GSR net, which will return all stor-
age elements in the FPGA to the state
specified by their INIT property.

The deassertion of GSR is asynchro-
nous and can take several clocks to
affect all flip-flops in the design. State
machines, counters or any other logic
that can change state autonomously
will require an explicit reset that
deasserts synchronously to the user
clock. As a result, using GSR as the
sole reset mechanism can result in an
unreliable system.

Hence, you are better served by
adopting a mixed approach to manage
the startup effectively.

Tip 5: A hybrid approach that
relies on the built-in initializa-
tion the GSR provides, along
with explicit resets for portions
of the design that can start auto-
nomously, will result in better
utilization and performance.

After using the GSR to set the initial
state of the entire design, use explicit
resets for logic elements, like state
machines, that require a synchronous
reset. Generate the synchronized ver-
sion of the explicit reset using either a
standard metastability resolution cir-
cuit or a reset bridge.

USE APPROPRIATE RESETS TO
MAXIMIZE UTILIZATION
The style of reset used in RTL code can
have a significant impact on the ability
of the tools to map a design to the
underlying FPGA resources. When writ-
ing RTL code, it is important that
designers tailor the reset style of their
subdesign to enable the tools to map to
these resources.

Other than using the GSR mechanism
for initialization, you cannot reset the
contents of SRLs, LUTRAMs and block
RAMs using an explicit reset. Thus, when
writing code that is expected to map to
these resources, it is important to code

48 Xcell Journal Third Quarter 2011

A S K F A E - X

signal reg: std_logic_vector (7 downto 0) := (others <= ‘0’);
....
process (clk) begin
 if (clk’event and clk= ‘1’) then
 if (rst= ‘1’) then
 reg <= ‘0’;
 else
 reg <= D;
 end if;
 end if;
end process;

Figure 6 – Signal initialization in RTL code (VHDL)

D Q
CK

D Q
CK

D Q
CK

DD

D

Q
CK

D Q
CK

SRset SRVAL=1

D Q
CK

SRrst

set

rstSRVAL=0

Design

3
S

lic
es

1
S

lic
e

FPGA

Figure 7 – Control set reduction on SR

specifically without reset. For example,
if RTL code describes a 32-bit shift regis-
ter with an explicit reset for the 32 stages
in the shift register, the synthesis tool
would not be able to map this RTL code
directly to an SRL32E because it cannot
meet the requirements of the coded
reset using this resource. Instead, it
would either infer 32 flip-flops or infer
some additional circuitry around an
SRL32E in order to implement the
required reset functionality. Both of
these solutions would require more
resources than if you had coded the RTL
without reset.

Tip 6: When mapping to SRLs,
LUTRAMs or block RAMs, do not
code for a reset of the SRL or
RAM array.

In 7 series devices, you cannot pack flip-
flops with different control signals into
the same slice. For low-fanout resets,
this can have a negative impact on over-
all slice utilization. With synchronous
resets, the synthesis tool can implement
the reset functionality using LUTs (as
shown in Figure 7) rather than control
ports of flip-flops, thereby removing the
reset as a control port. This allows you
to pack the resulting LUT/flip-flop pair
with other flip-flops that do not use their
SR ports. This may result in higher LUT
utilization but improved slice utilization.

Tip 7: Synchronous resets
enhance FPGA utilization. Use
them in your designs rather
than asynchronous resets.

Some of the larger dedicated resources
(namely block RAMs and DSP48E1
cells) contain registers that can be
inferred as part of the dedicated
resource functionality. Block RAMs
have optional output registers that you
can use to improve clock frequency by
means of an additional clock of latency.
DSP48E1 cells have many registers that
you can use both for pipelining, to
increase maximum clock speed, as well
as for cycle delays (Z-1). However,

these registers only have synchronous
set/reset capabilities.

Tip 8: Using synchronous resets
allows the synthesis tool to use
the registers inside dedicated
resources like DSP48E1 slices or
block RAMs. This improves overall
device utilization and perform-
ance for that portion of the
design, and also reduces overall
power consumption.

If the RTL code describes asynchronous
set/reset, then the synthesis tool will not
be able to use these internal registers.
Instead, it will use slice flip-flops since
they can implement the requested asyn-
chronous set/reset functionality. This will
not only result in poor device utilization
but will also have a negative impact on
performance and power.

MANY OPTIONS
Various reset options are available for
FPGAs, each with its own advantages
and disadvantages. The recommenda-
tions outlined here will help designers
choose a suitable reset structure for their
design. An optimal reset structure will
enhance the device utilization, timing and
power consumption of an FPGA.

Many of the tips explained in this
article are described in the Designing
with the 7 Series Families training
course. More information on Xilinx
courses is available at www.xilinx.com

/training.

About the Author

Srikanth Erusala-

gandi is currently

working as a solu-

tions development

engineer on Xilinx’s

Global Training Sol-

utions team. Srikanth develops content

for the Xilinx training courses. His areas

of expertise are FPGA design and connec-

tivity. Prior to joining Xilinx in January

2010, he spent close to six years at

MosChip Semiconductors as an applica-

tions engineer.

Third Quarter 2011 Xcell Journal 49

A S K F A E - X

